‘e o* inghiialljl

4 DARALMANDUMAH

Apa M hay L all o cigp 82 alg. T

Measuring software complexity for software engineering quality
assurance

Wohaishi, Ahmad Muhammad Ali

Fahmy, Maged A.. Al Sultanny, Yas A.(Co-Advisor. Advisor)
2009

aolioll

1-155

736039

aueol> blw,

English

uiow>o dlw,

w2l aulzdl asol>

Wl wlwl)al ads

o=l

Dissertations

Ologleall LiglgiSi «oleo | dwrid cogwldl gl
https://search.mandumah.com/Record/736039

Ulgusll

HEWIN| V-1V

ton>l padlio
HEINVIVN P TR |
:&990
1olxaall

:MD 48,

i Sgizeall £9i
raelll

réodell)l
Aol

ra sl

gl

10loglendl aclgd

:&;_..'o|99
ol

‘ ‘ abgaxo dgazl gaox .nghaioll ,ls 2019 ©
aclb of Juoss cliSoy .abgano sl Bsi> gaor Ol lale il Bgi> ool go gdgall BVl sle sl aslio bslall oid
s (esug,SIVI 2yl of iVl gdlgo Jio) alsws STy inidl ol Jugmeil of gas)] gioug onsd sasaia)] plaziwl sslodl 0is

Langhiall ls ol il Bei> Lol o s gy pa

ol LAl Zyl_i.lbl

www.manat

https://search.mandumah.com/Record/736039

Chapter 1

Introduction and Overview

As software systems importance has grown, the software community has continually
attempted to develop technologies that will make it easier, and less expensive to build and
maintain high-quality computer programs. Some of these technologies are targeted at a
specific application domain (e.g., web-site design and implementation), other focus on a
technology domain e.g. objected-oriented systems or aspect-oriented programming (Deitel
H. et. al. 2009). This chapter presents an overview of the thesis, it describes the problem

statement and continues with the thesis contribution. Then, it presents thesis outline.

1.1 Software Engineering

Several software systems have been developed over the past few years. However. the
absence of a standard regulatory mechanism in terms of quality control/quality assurance
with respect to implementation and managing projects, particularly in the industrial sector
has lead to an inconsistency among the various software systems. The complexity of each
project and uniqueness make the task even more difficult. With an eye on new
methodologies and tools relevant to the entire life cycle, from conceptualization to
implementation, the quality assurance of software has to be visualized. Development of
software for managing projects is an extremely complex affair. Usually. the evolution of
the software is the result of team work or rather several groups of specialists, who
individually are experts in their respective disciplines, but probably may now have enough
expertise in other disciplines. The work is quite tasking and time consuming. Whatever be
the technique for final testing of the sofiware, however organized be the methodology.
however systematic be the documentation involved as well as control of the final
configuration, it would be a fruitless exercise if proper management of quality assurance Is
not in place (Pressman R. 2003).

Software can also be seen as an interface between the problem domain and the computer as
shown in Figure 1.1. Software Engineering, as defined in IEEE Standard 610.12. 1s: “The
application of a systematic, disciplined, quantifiable approach to the development,

operation, and maintenance of software: that is, the application of engineering to software™.

Virtually all countries now depend on complex computer-based systems (Somerville 1.
2006). More and more products incorporate computers and controlling software in some
form. The software in these systems represents a large and increasing proportion of the total
system costs. Therefore, producing software in a cost-effective way is essential for the
functioning of national and international economies software engineering is an engineering
discipline whose goal is the cost effective development of software systems. In some ways,
this simplifies software engineering as there are no physical limitations on the potential of
software. In other ways, however, this lack of natural constraints means that software can
easily become extremely complex and hence very difficult to understand (Nasib S. 2005).

Figure 1.1: Contemporary View

Figure 1.2 shows short history of software. During the early years of the computer era,
general-purpose hardware became commonplace. Product software (ie., programs
developed to be sold to one or more customers) was in its infancy. The second era of
computer system spanned the decade from the mid-1960s to the late 1970s.
Multiprogramming and multi-user systems introduced new concepts of human-machine
interaction. Real-time systems could collect, analyze, and transform data from multiple
sources. The second era was also characterized by the use of product software and the
advent of "software houses." The third era of computer system evolution began in mid-
1970s and spanned more than a full decade. The distributed system greatly increased the
complexity of computer-based systems. The conclusion of third era was characterized by

the advent and widespread use of microprocessors. In less than a decade, computers
became readily accessible to the public at large. The fourth era of computer system
evolution moves us away from individual computers and computer programs and toward
the collective impact of computers and software. Powerful desk-top machines controlled by
sophisticated operating systems, networked locally and globally, and coupled with
advanced software applications have become the norm. The Internet exploded and changed
the way of life and business (Pressman R. 2005).

e Powerful desktop
systems

e Object-oriented
technologies

I
1
]
]
1
I
]
]
1
, ® Artificial neural
i
1
]
]
1
1
]

Expert systems
networks
Parallel computing
Network computers
The fourth era
, e R e w1 b N e I
| * Distributed systems :
L Embedded “intelligence” :
1 o Low cost hardware]
| » Consumer impact :
: The third era :
U R n IR AR e s 1
: e Multi-user :
1 » Real-time]
| » Database :
| © Product software |
: The second era :
o T e 5
, * Batch orientation :
L Limited distribution :
1 o Custom software 1
: Early years :
1950 1960 1970 1980 1990 2008

Figure 1.2: A short history of software

The series of steps that software undergoes, from concept exploration through final

retirement, is termed its life cycle as shown in Figure 1.3. During this time, the product

goes through a series of phases: requirements, specification (analysis), planning, design,
implementation, integration, maintenance (which is the highest cost among all these
phases), and retirement (Schach S. 1997).

¥ Requirement 2%

® Specification 5%

® Design 6%

¥ Module Coding 5%
¥ Module Testing 7%

 Integration 8%

“' Maintenance 67%

Figure 1.3: The phases of the software life cycle/software process

1. Requirements phase: The concept is explored and refined, and the client’s
requirements are elicited.

2. Specifications (analysis) phase: The client’s requirements are analyzed and
presented in the form of the specification document (“what the product is supposed
to do”). Sometimes it is called the specification phase since a plan is drawn up for
the software project management and the proposed development is described in
detail.

3. Design phase: The specifications undergo two consecutive processes of
architectural design (the product as a whole is broken down into modules) and
detailed design (each module is designed).

4. Implementation phase: The various components undergo coding and testing.

5. Integration phase: The components are combined and tested as a whole
(integration) when the developers are satisfied that the product functions correctly,

it is tested by the client (acceptance testing) implementation phase ends when the
product is accepted by the client and installed on the client’s computer.

6. Maintenance phase: All changes to the product once the product has been delivered
and installed on the client’s computer. It includes corrective maintenance (software
repair) which consists of the removal of residual faults while leaving the
specifications unchanged and enhancements (software updates) which consists of
changes to the specifications and the implementation of those changes. The two
types of enhancements are perfective (changes the client thinks will improve the
effectiveness of the product, such as additional functionality or decreased response
time) and adaptive (changes made in response to changes in the environment, such
as new hardware/operating system or new government regulations).

7. Retirement phase: The product is removed from service. Provided functionality is

no longer of use to the client.

1.2 Software Quality Assurance
The quality of software has improved significantly over the last few years and the reason
for this is that companies have new techniques and technology such as the use of object-
oriented development and associated Computer-Aided Software Engineering (CASE)
support. In addition, however, there has a greater awareness of the importance of software
quality management and the adoption of quality management technigues from
manufacturing in the software industry. However, software quality is a complex concept
that is not directly comparable with quality in manufacturing. In manufacturing. the notion
of quality means that the developed product should meet its specification. In an ideal world
this definition should be applied to all products but for software system the problems with
this is as the following (Moores B 1994):
» A specification should be oriented toward the characteristics of the product that the
customer wants. However, the development organization may also have equipments
{(such as maintainability requirements) that are not included in the specification.
» Unknown how to specify certain quality characteristics (e.g., maintain ability) in an

unambiguous way.

Quality assurance (QA) is the process to define how the software quality can be achieved
and how the development organization knows that the software has the required level of
quality. The QA process is primarily concerned with defining or selecting standards that
should be applied to the software development process or software product. As the part of
QA process tools and methods to support these standards are selected and procured. The
two types of standards that may be established as part of the quality assurance process are
(Sommerville 1. 2006):

1. Product standards: these standards are applied to the sofiware product being
developed. These include document standards, such as the structure of requirements
documents; documentation standards.

2 Process standards: these standards define the process that should be followed during
software development. It include definitions of specification design and validation
process and a description of the documents that should be written in the path of
these processes.

SQA must plan what checks to do early in the project. The most important selection
criterion for software quality assurance planning is risk. Common risk areas in software
development are novelty, complexity, staff capability, staff experience, manual procedures
and organizational maturity. SQA staff should concentrate on those items that have a strong
influence on product quality. They should check as early as possible the following (Jones
M. et. al. 1997):

» Project is properly organized, with an appropriate life cycle:

» development team members have defined tasks and responsibilities;
¢ documentation plans are implemented;

» documentation contains what it should contain:

» documentation and coding standards are followed;

e standards, practices and conventions are adhered to;

e metric data is collected and used to improve products and processes;
e reviews and audits take place and are properly conducted;

s tests are specified and rigorously carried out:

e problems are recorded and tracked,;

e projects use appropriate tools, techniques and methods;

e software is stored in controlled libraries;

¢ software is stored safely and securely;

¢ software from external suppliers meets applicable standards;

e proper records are kept of all activities;

o staff are properly trained;

o risks to the project are minimized.
Project management is responsible for the organization of SQA activities, the definition of
SQA roles and the allocation of staff to those roles (Jones M. et. al. 1997).

1.3 Software Quality Control

Good quality managers aim to develop a ‘quality culture’ where everyone responsible for
product developments is committed to achieving a high level of product quality as shown in
Figure 1.4. They encourage teams to take responsibility for the quality for their work and to
develop new approaches to quality improvement, while standards and procedures are the
basis of quality management, experienced quality managers recognize that there are
intangible aspects to software quality (elegance, readability, etc.) that cannot be embodied
in standards. They support people who are interested in these intangible aspects of quality
and encourage professional behavior in all team members (Daniel G. 2003).

Figure 1.4: Process based quality

Variation control may be equated to quality control as shown in Figure 1.5. But how do we
achieve quality control?. Quality control involves the series of inspection, reviews, and
tests used throughout the software process to ensure each work product meets the
requirements placed upon it. Quality control includes a feedback loop to the process that
created the work product. The combination of measurement and feedback allows us to tune
the process when the work products created fail to meet their specifications. A key concept
of quality control is that all work products have defined, measurable specifications to which
we may compare the output of each process. The feedback loop is essential to minimize the

defects product (Vigder M. et. al. 1994).

Software development

Frocess (i) D2 D3 D4 D5 D6
o . > o —
Quality management
Process & \ v v v
Standards and Quality plan Quality review reports

Procedures

Figure 1.5: Quality control process

Testing presents an interesting anomaly for the software engineers, who by their nature are
constructive people. Testing requires that the developer discard preconceived notions of the
“correctness” of software just developed and then work hard to design test cases to “break”
the software. Software testability is simply how easily can be tested. The following
characteristics lead to testable software (Gray M. 1999):

Operability: “The better it works, the more efficiently it can be tested.” If a system is
designed and implemented with quality in mind, relatively few bugs will block the

execution of tests, allowing testing to progress without fits and starts.

Observability: **What you see is what you test.” Inputs provided as part of testing produce
distinct outputs. System states and variable are visible during execution. Incorrect output is
easily identified. Internal errors are automatically detected and reported. Source code is

accessible.

Controllability: “The better we can control the software. The more the testing can be
automated and optimized.” software and hardware states and variables can be controlled
directly by the test engineer. Tests can be conveniently specified automated, and

reproduced.

Decomposability: “By controlling the scope of testing, we can more quickly isolate
problems and perform smarter retesting.” the software is built from independent modules

that can be tested independently.

Simplicity: “The less there is to test, the more quickly we can test it.” The program should
exhibit functional simplicity (e.g., the feature set is the minimum necessary to meet
requirements), structural simplicity (e.g., architecture is modularized to limit the
propagation of faults), and code simplicity (e.g.. a coding standard is adopted for ease of

inspection and maintenance).

Stability: “The fewer the changes, the fewer the disruption to testing.” changes to the
software are infrequent, controlled when they do occur, and do not invalidate existing tests.

The software recovers well from failure.

Understandability: “The more information we have, the smarter we will test.” The
architectural design and the dependencies between internal, external and shared
components are well understood. Technical documentation is instantly accessible. well
organized specific and detailed, and accurate. Changes to the design are communicated to

testers.

10

Most systems eventually reach a point when questions arise about their maintainability and
supportability. Some systems are supportable for years, while others have supportability
problems from initial deployment. Many of these problems are indicative of insufficient
resources being applied to system support. The key to having cost-effective systems is to
have applied the correct quality controls during initial development and implemented good
recovery strategies to existing systems. Quality controls used during maintenance may need
to be different than those used when the software was created. There are a number of
important issues when considering improving the quality of existing software systems.
Some are (Brenda C. et. al. 2002):
¢ Most likely the system is being managed in a different environment than it was
developed.
o Customers or users should be involved and their expectations need to be carefully
considered, particularly in terms of failures or errors and availability.
s The people involved in support of the system may not be the same ones that
developed it.
» How the system was developed or constructed may not necessarily be obvious to
current maintainers.
¢ Documentation and a change management process may not be adequate.
¢ Planning for adequate resources and identification of their sources needs to be done.
e Integration into information architectures or modernization plans needs to be
considered.
There are good reasons to consider improving the quality of existing systems. If a system is
becoming difficult to support, it may well hinder an organization’s ability to achieve
business success. Support costs can be up to 80% of the system’s overall life cycle cost:

quality improvements can provide a clear return on investment (Chatzigeorgiou A. et. al.
2003).

To provide a methodology for designing, applying, and validating sofiware quality
guidelines, we recommend and briefly summarize IEEE standard 1061 (IEEE Std 106]
1998). This standard gives a process for constructing and implementing a software quality

metrics framework that can be tailor-made to meet quality requirements for a particular

11

project and/or organization. Since the introduction of source code metrics into the
discipline of software engineering, controversy has surrounded attempts to validate their
usefulness as indicators and discriminators of quality. Traditional metrics such as
McCabe’s cyclomatic complexity, Halstead’s software science metrics, and source lines-ot-
code, while persisting as commonly used metrics for indicating quality, unfortunately still
lack conclusive evidence to support this practice. The reasons why traditional code metrics
have been inadequate as measures of quality and complexity include the

following(Crutchfield et. al. 1994):

e They are narrow in the scope of software characteristics they measure, and they are
defined to be language independent.

» Their conception was strongly influenced by the relative simplicity of programming
languages.

e They are based primarily on lexical and syntactic features of code, rather than on
the semantic and structural relationships that exist among program units and smaller
elements within units.

e They focus on executable statements and generally neglect the influence on
complexity of data definitions and the interaction between data and computation
flow.

¢ They have often been designed without regard to the programmers task, problem
domain, or environment and ignore the stylistic characteristics of a program.

All testing activities should include processes to uncover defects during the complete life
cycle of the software. The focus on full life cycle testing (as opposed to system integration
testing only) is important because the cost of defects rises exponentially the later the phase
of the cycle. The testing activities include. but are not limited to (Bussieck M. et. al. 2004):
Unit testing: Testing of the individual component using both black-box (input-output only)
and white-box (known internal code structure) type tests.

Regression testing: Testing to determine if changes to the software or fixing a defect cause

any problems to other components in the system.

12

System Integration Testing: Testing done to ensure that the entire product functions as
intended and to specifications. The emphasis of all testing activities is again on automation
and reproducibility.

Metrics: Most engineering processes involve measurements to make accurate assessments

of the attributes of the product.

1.4 Fundamental of Software Testing

Software engineering is an engineering discipline which is concerned with all aspects of
software production. Engineering discipline Engineers make things controlled and working
under their authority. They apply theories, methods and tools where these are appropriated
but they use them selectively and always try to discover solutions to problems even when
there are no applicable theories and methods. Engineers also recognize that they must work
to organizational and financial constrains. so they look for solutions within these
constrains. Depending upon the type of process and project being implemented. the testing
and evaluation of the associated software also becomes proportionally tougher to handle
(Kaner C. 2004).

In most cases, the effectiveness of the testing meets short of requirement leading to
downtime and project delays. Historically, software testing has been based only on
technical grounds. In recent times however, a lot of improvement in the ways and means of
testing software has developed. The fundamentals of software testing comprises of the
following (Ali K. et. al. 2004):

* A well-documented plan, test case

e Ways and means, tools, techniques

¢ Human aspect involving people and the company
For any software testing to be effective and efficient, a well-documented plan. test case,
tools and techniques are all important elements for quality assurance. The present testing
practices suffer broadly from three main deficiencies, which are more subjective rather than

objective, for example (Markku O. 1999):

s The types of'test methods

13

e The way the method is viewed by the users
» Work culture of the organization

Present day testing practices suffer due to various reasons such as:

¢ Not following written procedure

» Bypassing set rules

¢ Lack of knowledge of the importance of QA

e ‘Take it easy’ attitude

o Attitude of “Supply now, bugs in program can be fixed later’

¢ Poor pay and poor staffing
Measurement of the reliability of a software is facilitated by using past development data.
Similar to reliability programs in industrial processes, the reliability of a software process
can be defined as the probability of a failure-free program in a given environment and time
period. Software errors can be classified according to the programming and hardware
characteristics of the error, such as an incorrect memory-to-memory transfer caused by an
error in addressing. In addition, errors can be classified according to their effect on mission
success. Both types of classification are useful. However. the latter classification is much
more difficult to make than the former because it is necessary to associate three items of

information (Schneidewind 1975);

1) the manifestation of the error {incorrect target symbol on the display console):

2) the effect on the mission (failure to identify a hostile target); and

3) the programming cause of the error (incorrect interpretation by the program of an

operator hostile target input).

Although the variability among error counts which are used to measure software quality
could probably be decreased by classifying and counting errors by category. the resulting
sample sizes would be significantly reduced. Consequently. as a practical matter. only a
limited number of categories can be used for error classification. In Navel Tactical Data
System (NTDS) software error reporting, errors are classified according to the effect on the

mission as follows (Pan J. 1999):

14

e High: The program will be halted if this type of error occurs. Example: attempt to
address data outside the memory address range of the computer.

o Medium: This type of error will cause a degradation in system performance.
Example: target position is not updated with sufficient frequency.

» Low: This type of error will be distracting or annoying but will not normally result
in degraded performance, although lowered performance could result if the operator
is unable to cope with the problem. Example: the programmed refresh rate of the

display console is low and causes fading of symbol displays.

1.5 Standards

1SO9000 talks only in general terms without being specific about the service or the product.
It treats an organization as comprising of interconnected processes. These individual
processes must satisfy the requirements of their areas mentioned in the ISO document. The
development of software in a controlled manner is facilitated by 1SO9000/1SO14000 along
with proper procedures for project specifications, design and evaluation. Effective
implementation of the software in a controlled manner should result in its development in
an economical way and should include confidence among users and clients that it will meet
the requirements of the project. 1SO9000/1SO14000 does not say how the system has to be
implemented. This task is left for software developers to establish their own rules and
regulations depending upon their project, organization, etc., so as to achieve the
requirements of the standard. The bottom line is that the standard mentions the basic
requirements for quality management of software, to be developed with the objective of
meeting the requirements of individual projects. which vary from one project to another.
The development of software is not a one-man show. but rather done by a group of people.
Each and every person associated with the software development is actually a contributor to
quality management in one way or the other. Hence, all the responsibilities involved must
be clearly documented and applied. Each group of software developers must have a clear
understanding of the requirements of the project and must have smooth coordination within

and outside their sub-groups. The set of rules, regulations and procedures so as to meet the

15

contractual requirement of the project must be well established and adhered to strictly, so as
to have total control over quality assurance (Ashrafi 2003).

A quality assurance system may be defined as the organizational structure, responsibilities,
procedures, and resource for implement. QA systems are created to help organization
ensure their products and services satisfy customer expectations by meeting their
specifications. ISO 9000 describes a quality assurance system in generic terms that can be
applied to any business regardless of the products or services offered. To become registered
to one of the quality assurance system models contained in ISO 9000, a company’s quality
system and operations are scrutinized by third-party auditors for compliance to the
standards and for effective operation. Upon successful registration, a company is issued a
certificate from a registration body represented by the auditors. Semiannual surveillance
audits ensure continued compliance to the standard. Figure 1.6 shows the areas covered in
ISO 9001. ISO 9001:2000 is the quality assurance standard that applies to software
engineering. The standard contains 20 requirements that must be present for an effective
quality assurance system. Because the ISO 9001:2000 standard is applicable to all
engineering disciplines, a special set of ISO guidelines (ISO9000-3) have been developed
to help interpret the standard for use in the software process (Sommerville 1. 2006).

Instantiated as

Tonbad 16 Documents

develop

Instantiated as

Supports]

Figure 1.6: ISO 9000 and quality management

1.6 Problem Statement:

In designing there is a need to know the complexity especially for existing many
programming languages such as C++, Java, and Visual Basic that are used for producing
software. In this thesis, different methods for measuring software complexity specially
McCabe and Halstead methods are used to measure the complexity of the algorithms
written in different languages such as C++, Java, and Visual Basic. The guideline of
software quality assessment based on the analysis of McCabe and Halstead metrics will
help the researcher on calculating and measuring the software complexity. The conception
was strongly influenced by the relative simplicity of programming languages in popular
use. The focus is on executable statements and generally neglect the influence on
complexity of data definitions and the interaction between data and computation flow. A
software quality model which is effective in testing and improving the sofiware quality and
software houses through transitions to higher software culture is suggested. Software
testing techniques, methodologies, tools, and standards can only aid in testing. Testing need
to focus on maximizing ‘customer satisfaction’ rather than just detecting and correcting

errors involved in delivered software.

1.7 Research Significance

Complexity has undesirable effects on, among others, the correciness. maintainability, and
understandability of business process models. Yet, measuring complexity of business
process models is a rather new area of research with only a small number of contributions.
In our research, survey findings from neighboring disciplines on how complexity can be
measured will be carried out. In particular. gathering insight from software engineering.
and graph theory, and discuss in how far analogous metrics can be defined on business
process models. The results of this research will be quite helpful to the program designers
and researchers in quantifying the specific measuring tools for software quality attributes
and it will lead into new techniques for measuring the complexity for software engineering.
These shortcomings have led to investigate design-oriented or structural metrics: which is,
metrics either can be applied to artifacts of design. or that measure only design related

software characteristics, such as structural relationships.

17

1.8 Research Objective
The main objective of the thesis is to find out an appropriate method for software
complexity measurement to improve software engineering quality. in order to make the
sofiware simple and easy to understand the logic, maintain, review and use.
The sub objectives are:

1. To obtain the specific measuring tools for software quality attributes through

Cyclomatic Complexity and Halstead metrics.
2. To find out a methodology for designing, applying and validating software quality

guidelines.

1.9 Research Methodology

The research divided into three parts: one theoretical and one practical part. that together
result in a third concluding part. In the theory part will present what has been done in the
area of software complexity and investigate the metrics that are to be evaluated. In the
second part will collect tools that measure the selected metrics and apply them to a code
base with well-known design quality. In the third concluding part will discuss how the
results from the practical experiment together with the theoretical part are to be interpreted.
The validity of the metrics and suggest strategies on how they can be used in different
stages in a software development process will be discussed.

The steps of research are:

1. Anextensive literature review of the subject.

2. Proposing own algorithms and techniques.

3. Specifying measurement of complexity for sofiware.

4. Gathering information through extensive field studies in order to understand the
functions and activities to improve the quality and effectiveness of the software
engineering.

S. Investigating related work and study.

6. Adequate comparisons, analysis, conclusions and recommendation will accompany

my work.

18

1.10 Research Variables

The rate of complexity suggested by McCabe and Halstead, which suitable with the new
languages such as the object oriented languages need to be investigated. Perceptions of
current software engineering practices were gathered by measurement of success and
complexity in software projects and will study the factors influencing the success of

software engineering practices.

1.11 Thesis Qutline:

This thesis consists of seven chapters:
Chapter 1 introduces the software engineering and quality issues, for example software
quality assurance and software quality control. Then, it gives smail brief about the

fundamental of software testing and the problem of statement.

Chapter 2 discusses the structure to measure the software complexity such as control-flow
structure, data structure, and data-flow structure. Subsequently discusses several types of
software complexity measurement such as lines of code methods, information flow metric,
complexity measure (McCabe methods), Halstead methods. and cognitive weights

methods.

Chapter 3 introduces the object-oriented programming and history of object-oriented
programming language. Discussed different types of object-oriented languages such as
JAVA, C++, CENET, and Visual Basic.NET. Then it compares between Microsoft’s C#
programming language to SUN Microsystems’s JAVA programming language keyword.
Then the complexity of lincar search code and binary search code algorithms written in

C-++, Visual Basic, and Java is measured and compared.

Chapter 4 applies Halstead mathematics equation complexity through several estimated
examples taken in consideration different value of operators and operands. Then. discusses
the affect of execution time for three types of microprocessor such as 80286, 80486, and

Pentium. Then discusses the combinational logic.

19

Chapter 5 introduces and discusses software complexity based on cognitive weights to
analyze the robustness of the new measurement of cognitive functional size and its

relationship with the physical size of software.

Chapter 6 proposes a model of software complexity that will form the basis for software

quality assurance.

Chapter 7 is conclusion and future works.

http://www.tcpdf.org

‘e o* inghiialljl

4 DARALMANDUMAH

Apa M hay L all o cigp 82 alg. T

Measuring software complexity for software engineering quality
assurance

Wohaishi, Ahmad Muhammad Ali

Fahmy, Maged A.. Al Sultanny, Yas A.(Co-Advisor. Advisor)
2009

aolioll

1-155

736039

aueol> blw,

English

uiow>o dlw,

w2l aulzdl asol>

Wl wlwl)al ads

o=l

Dissertations

Ologleall LiglgiSi «oleo | dwrid cogwldl gl
https://search.mandumah.com/Record/736039

Ulgusll

HEWIN| V-1V

ton>l padlio
HEINVIVN P TR |
:&990
1olxaall

:MD 48,

i Sgizeall £9i
raelll

réodell)l
Aol

ra sl

gl

10loglendl aclgd

:&;_..'o|99
ol

‘ ‘ abgaxo dgazl gaox .nghaioll ,ls 2019 ©
aclb of Juoss cliSoy .abgano sl Bsi> gaor Ol lale il Bgi> ool go gdgall BVl sle sl aslio bslall oid
s (esug,SIVI 2yl of iVl gdlgo Jio) alsws STy inidl ol Jugmeil of gas)] gioug onsd sasaia)] plaziwl sslodl 0is

Langhiall ls ol il Bei> Lol o s gy pa

ol LAl Zyl_i.lbl

www.manat

https://search.mandumah.com/Record/736039

Chapter 2

Literature Survey on Software Complexity

Measurement is needed for assessing the status of products, processes and resources. Every
measurement activity must be in the way of achieving clearly defined goals. Understanding
measurement helps to understand what is happening during development and maintenance
phases of software development. Measurement should be done in order to derive models of
processes and examine relationships among the process parameters. It leads to better
understanding and improving software projects (Ali M. 2006).

There are many of software complexity measures, ranging from the simple, such as source
lines of code, to the obscure, such as number of variable definition/usage associations. It is
important to select a good subset of these measures for implementation. Ar important
criterion for metrics selection is uniformity of application. The key idea here is "open
reengineering." The reason "open systems" are so popular for commercial software
applications is that the user is guaranteed a certain level of interoperability and the
applications work together in a common framework. These applications can be ported
across hardware platforms with minimal impact. The open reengineering concept is similar,
in that the abstract models used to represent software systems should be as independent as
possible of implementation characteristics such as source code formatting and
programming language. Complexity measurement is a fundamental application, but open
reengineering extends to other modeling techniques such as flow graphs, structure charts.
and structure-based testing (Kan S. 2003). This Chapter presents the software complexity

theories and summarizes the literature survey on this issue.

2.1 Structure measures of software complexity

Over the last three decades many measures have been proposed by researchers to analyze
software complexity, understandability, and maintenance. Metrics were designed to analyze
software such as imperative, procedural, and object-oriented programs. Software
measurement is concerned with deriving a numeric value for an attribute of a software
product, i.e. a measurement is a mapping from the empirical world to the formal world.

From the several software metrics available there are particuiarly interests in studying

21

complexity metrics and find out how it can be used to evaluate the complexity of business
processes. Software metrics are often used to give a quantitative indication of a program’s
complexity. However, it is not confused with computational complexity measures, whose
aim is to compare the performance of algorithms. Software metrics have been found to be
useful in reducing sofiware maintenance costs by assigning a numeric value to reflect the
ease or difficulty with which a program module may be understood. There are hundreds of
software complexity measures that have been described and published. For example, the
most basic complexity measure is the number of lines of code (LOC), simply counts the
lines of executable code, data declarations, comments, and so on. While this measure is
extremely simple, it has been shown to be very useful and correlates well with the number
of errors in programs (Cardoso et. al. 2006).

Software Metrics are standards to determine the size of an attribute of a software product
and a way to evaluate it. They can also be applied to the software process. Classification of
software metrics is as the following (Klasky H. 2003):

a) Software product merrics. These metrics measure the software product at
any stage of its development. They are often classified according to the size,
complexity, quality and data dependency.

b) Software process metrics: These metrics measure the process regarding to
the time that the project will take, cost, methodology followed and how the
experience of the team members can affect these values. They can be

classified as empirical. statistical, theory base and composite models.

The size of the product offers a great deal of information about the effort that went into
producing it. A large module takes longer to be specified, designed, and coded than that of
a smaller one. However, this view is not true; the structure of the product has a role, not
only in terms of the development effort but also maintenance. We must examine the
features of product structure to determine how they influence the required outcomes.
Although the structure of a module is often called complexity, there are various elements of
structure or complexity each having a diverse role. Structure can be seen to have three

main parts (Banker R. 1989):

22

1. Control-flow structure

2. Data-flow structure

3. Data structure
The control flow deals with the sequence by which instructions are performed in a program.
Data flow follows the trail of a data item as it is produced or handled by the program. Data

structure is the organization of the data itself, independent of the program (Sofia N. 1999).

In our daily life, people always believe that simple things are reliable and easy to be
repaired. So does it in the design of hardware and software reliabilities. Software
measurement should be applied to guiding the process of testing, because intricate and
involved software may be especially difficult to code, debug, test, and maintain (Yanming
C. et. al. 2007).

Software complexity is one branch of software metrics that is focused on direct
measurement of software attributes, as opposed to indirect software measures such as
project milestone status and reported system failures. Ideally, complexity measures should
have both descriptive and prescriptive components. Descriptive measures identify software
that is error-prone, hard to understand, hard to modify, hard to test, and so on. Prescriptive
measures identify operational steps to help control software, for example splitting complex
modules into several simpler ones, or indicating the amount of testing that should be

performed on given modules (Watson et. al. 1996).

There are two independent approaches to develop a control flow complexity metric to
analyze business process: a top-down and a bottom-up approach, The top-down approach
starts by formulating a set of general metrics common to various business process
languages such as Business Process Execution Language (BPEL). These metrics are then
applied to specific business process languages to evaluate their applicability and if
necessary missing control flow elements can be added to general metric. In the second
approach, the bottom-up approach start by analyzing specific business process languages
and formulate specific control flow complexity metrics. Once a reasonable set of business
process languages have been analyzed it is then possible to advise general metrics that can

be suitably applied to the business process languages analyzed (Cardoso 2006).

23

Growing maintenance costs have become a major concern for developers and users of
software systems. Changeability is an important aspect of maintainability, especially in
environments where software changes are frequently required. The assumption that high-
level design has an influence on maintainability is carried over to changeability and
investigated for that quality characteristics. The approach taken to assess the changeability
of an object-oriented (OO) system is to compute the impact of changes made to classes of
the system. A change impact model is defined at the conceptual level and mapped on the
C++ language. In order to assess the practicality of the model on large industrial software
systems, an experiment involving the impact of one change is carried out on a
telecommunications system (Chaumun et. al. 2002).

There are five classic approaches being used for software measurement. Each of these
approaches will be discussed in the following Sections:

1. LOC (lines of code) which stand for software's length.
IF {information flow) which regards amount of information flow.

2

3. McCabe which concerns loops.

4, Halstead which concerns with numbers of operators and operands.
5

Cognitive weights method.

2.2 Line of Code Method

The predominant definition for lines of code (LOC) is ‘a line of code is line of program text
that is not a comment or blank line, regardless of the number of statements or fragments of
statements on the line’. LOC is used as an indicator of software reliability and maintenance.
Empirical data from research done by various researchers show that LOC metric has a high
correlation to system reliability and maintenance in spite of its simplicity. It has been used
extensively in spite of all the criticisms. However, LOC is highly language specific.
therefore it can be used for comparison of code in the same language. Also. is not
applicable for visual languages because the notion of LOC may not be meaningful. It is not
a suitable indicator at the design phase when the code has not been developed because it is
not a good indicator of structural complexity. Possibly the most commonly used sofiware

measurement is the LOC (lines of code) metric. It is easy to calculate and can be interpreted

24

in a variety of ways to describe source code. Many programmers use the LOC metric to
depict a program’s size, complexity, or programming effort. There are few different ways
of calculating the LOC metric. Some involvs counting only non white spaces lines, while
others exclude comments (Garcia 2008).

The most commonly used measure for the length of a code source of a program is the
number of lines of code (LOC). The abbreviation NCLOC is used to represent a
noncommented source line of code. NCLOC 1is also sometimes referred to as effective lines
of code (ELOC). NCLOC is therefore a measure of the uncommented length, The
commented length is also a valid measure, depending on whether or not line documentation
is considered to be a part of programming effort. The abbreviation CLOC is used to
represent a commented source line of code. By measuring NCLOC and CLOC separately

we can define:
total length(LOC)y= NCLOC + CLOC L(2.1)

[t is useful to separate comment lines and other lines (NCLOC). KLOC is used to denote

thousands of lines of code. Generally, is better to address how the followings are handled:

1) blank lines

2) comment lines (CLOC)

3} data declarations or other commands

4) lines that contains several separate instructions

5) program lines generated by a tool
The entity CLOC/LOC is then a measure of the density of comments in a program. The
purpose of software is to provide certain functionality for solving some specific problems
or to perform certain tasks. Efficient design provides the functionality with lower
implementation effort and fewer LOCs. Therefore, using LOC data to measure software
productivity is like using the weight of an airplane to measure its speed and capability, In
addition to the level of languages issue, LOC data do not reflect no coding work such as the

creation of requirements, specifications, and user manuals (Chis 2008).

"The most basic complexity measure, the number of lines of code LOC counting the size of

software is usually applied to executable sentence. The major concern in the original

25

method is the use of software size as the only complexity factor, due to the Jimitation of
detailed information available during the carly stage of a program. It is likelihood that the
larger the size of a program is, the more the defects there could be. The LOC metrics does
represent some aspects of software complexity, but it is a rough method which does not
provide the necessary fidelity for a software reliability assessment. LOC should be a

referenced factor of software complexity (Yanming C. et. al. 2007).

The number of lines of code, does not meet the open reengineering criterion, since it is
extremely sensitive to programming language. coding style, and textual formatting of the

source code (Waston et. al. 1996).

2.3 Information Flow

The information flow metric is a structure metric that measures the sources (fan-in) and
destinations (fan-out) of all data related to a given software component. These factors are
used to compute the communication complexity of the component, which is taken as a
measure of the strength of its communication relationship with other components. The fan-
in consists of all function parameters and global data structures from which the function
retrieves its information, while the fan-out consists of the return values from function calls
and the global data structures that the function updates. Another important structure metric
draws attention to the “ripple effect” that occurs when a change to one component causes a
need for change in other components. In this stability measure, the flow of data through
parameters and global variables is used to identify the components which could be affected
by a change in a particular component both of these metrics reflect a quality risk. If
program components are designed to be too dependent on each other, flexibility is lost.
This means the program is more difficult to change in the future. Other metrics that can be
taken once the analysis and design phases are complete are the number of documents
produced, the size of these documents, and several metrics that analyze the contents of the
documents. Using these, a project could determine whether the analysis and design quality
is sufficient, or if more work is needed (Fagerholm 2007).

Measures of control-flow structure have been the interest of software metrics work since

the beginning of the 1970’s. This approach defines a connection between two components

26

to exist if there is a possible flow of information from one to the other. The information
flow metrics are based on the structure created by the flow of information within a system,
This metric provides a method for quantitatively assessing the balance between structure
and efficiency. It captures the intuition that a large but well-structured system may be less
complex than a smaller, but poorly structured system. Where interface is complex, there
exists a far greater potential for a simple maintenance change to ripple through the system
and impact other components. The procedure for calculating the metrics is as follows
{Areeiit P. et. al. 2005):

1. ldentify the information flows in a system:
e Local Direct Flow: if a module invokes a second module and passes information
to it or if the invoked module returns a result to the caller
o Local Indirect Flow: if the invoked module returns information, which is
subsequently passed to another invoked module.
o Global Flow: if there is flow of information from one module to another, via a
global data structure.
2. Calculate fan-in and fan-out:
e Fan-in: number of local flows that terminate at a module, plus the number of
data structures from which information is retrieved.
* Fan-out: number of local flows that emanate from a module plus the number of
data structures that are updated by that module

3. Calculate complexity of each module:

The most commonly used method is fan-in and fan-out metrics. Henry and Kafura in 1981

defined the structure complexity as
C=(fan-in * fan-out)’ L(2.2)

where C stands for the amount of information flow in a module, fan-in is a module's inputs,

and fan-out is the amount of return values and variables changed (Yanming C. et. al. 2007).

27

The intra-module complexity is given by the term length which can be defined as the
number of lines of text in the source code for the module while the inter-module
complexity is given by the term fan-in * fan-out. The inter-module complexity term
represents the total possible number of combinations of an input source to an output
destination, i.e. the total possible combinative paths of information flow. The metric thus
takes into account both the intra-module complexity and the inter-module complexity.
Raising the equation to the power of 2 is done to express the complexity as a nonlinear
function, which means that the information flows contribute to the physical complexity of
an entity in a nonlinear relation with length. It also reflects the fact that it is more difficult
to understand the interactions among the entities than the length of the code. The controt
flow measures are typically modeled using directed graphs as shown in Figure 2.1, with
each node representing a program statement and each arc the flow of one statement to the
next. These directed graphs are known as control graphs or flow graphs.

However, instead of using the typical length measure, which involves counting the number
of statements in the module, McCabe’s cyclomatic complexity and data complexity have
been used. This is because McCabe’s cyclomatic complexity has shown greater correlations
to errors and programming time than the simple length metric. McCabe method will be

discussed in the following Section.

10
10 INPUTP 20
20 Div=2 _
30 Lim=INT(SQR(P)) 30
40 Flag = P/Div- INT(P/Div)
50 IfFlag =0 OR Div = Lim THEN 80 40 7
60 Div = Div +1 80

70 GO TO 40 110 Qe

80 IF Flag <> 0 OR P>4 THEN 110 50
90 Print Div

100 GOTO 120 é)l

110 Print P 120

120 End

Figure 2.1: A program and its associated flow graph

28

2.4 McCabe Method

Thomas McCabe introduced his graph-theoretic approach for measuring program
complexity. His complexity measurement calculates total number of possible control paths

through a program, using a control graph (Garcia 2008).

McCabe (1976) proposed “A complexity measure” that brought forward the idea of
cyclomatic complexity for the first time, and it basically measures decision points or loops
of the program. Cyclomatic complexity utilizes a graph, which is derived from code. The
formula defined as:

MC=V(G)y=e-n+2p . (2.3)
where e is the number of edges, n is the number of nodes, and p is the number of connected
components as shown in Figure 2.2, McCabe's cyclomatic complexity metrics measures
software complexity in program'’s structure, but it neglects the fact that length of a program

is a factor of complexity (Yanming C. et. al. 2007).

i McCabe cyclomatic complexity (MC) = edges -nodes +2=10-7+2=35

H

Figure 2.2: Example for McCabe’s cyclomatic number

29

The complexity measure approach is to measure and control the number of paths through a
program. This approach, however, immediately raises the following nasty problem: "Any
program with a backward branch potentially has an infinite number of paths.” Although it is
possible to define a set of algebraic expressions that give the total number of possible paths
through a (structured) program using the total number of paths has been found to be
impractical. Because of this the complexity measure developed here is defined in terms of
basic paths that when taken in combination will generate every possible path (McCabe
1976).

McCabe (1976) did not provide a clear definition (characterization and meta-model) of the
complexity attribute: this does not facilitate the understanding of this measure and it is
challenging to analyze McCabe interpretation of software complexity. Similarly while
defining a numerical assignment rule, McCabe did not provide the properties of the
numerical representation. Understanding of related measurement concepts, and in particular
of the cyclomatic number in graph theory, is therefore important to understand the input to
the design of the number proposed by McCabe (1976). A key contribution of McCabe has
been his attempt at transposing into software the cyclomatic number from graph theory.
McCabe, while using the term ‘complexity’, does not provide his definition of complexity.
nor of the attribute itself, nor of his direct characterization. His approach is basically to
mapping of the concepts that selected from graph theory into his view of software as a
control flow graph (Abran A. et. al., 2004).

The McCabe cyclomatic complexity measure is so versatile and widely used that it is often
referred to simply as "complexity,” and recommend it as the foundation of any software
complexity program. Since it is based purely on the decision structure of the code, it is
uniformly applicable across projects and languages and is completely insensitive to
cosmetic changes in code. Many studies have established its correlation with errors. so it
can be used to predict reliability. More significantly, studies have shown that the risk of
errors jumps for functions with a cyclomatic complexity over 10, so there's a validated
threshold for reliability screening. Also, this assessment can be performed incrementally

during development and can even be estimated from a detailed design. For an individual

30

software module, the programmer can easily calculate cyclomatic compiexity manually by
counting the decision constructs in the code. This allows continuous control during a
project, so that unreliable code is prevented at the unit development stage. Compliance can
be verified at any stage of the project using automated tools. A final benefit of cyclomatic
complexity is that it gives a precise verifiable testing prescription that the more complex

therefore error-prone a piece of software is, the more testing it requires (Thomas J. 1994).

Although no one would argue that the number of control paths relates to code complexity.
some argue that this number is only part of the complexity picture. According to McCabe, a
3,000-line program with five IF/THEN statements is less complex than a 200-line program
with six IF/THEN statements. Many programmers find this assertion hard to swallow.
McCabe and others found a high correlation between programs with high failure rates and

high cyclomatic complexity (Lou M. 1997).

2.5 Halstead’s Method

In 1976 Maurice Halstead made an attempt to capture notions on size and complexity
beyond the counting number of operators and number of operands of the program (Magnus
A. et. al. 2004). Halstead’s metrics are related to the areas that were being advanced in the
seventies, mainly psychology literature. Although his metrics are ofien referenced to in
software engineering studies and they have had a great impact in the area, the metrics have
been a subject of criticisms over the years. Although his work has had a lasting impact,
Halstead’s methods, or measures, provide an example of confused and inadequate
measurement. However, other studies have empirically investigated the metrics and found
them (or parts of them) to be good maintainability predictors. One metric that uses parts of
Halstead’s metrics is the maintainability index metric. Before defining the metrics.
Halstead began defining a program P as a collection of tokens, classified as either operators
or operands. The basic metrics for these tokens where:

* u, = number of unique operators

» u, = number of unique operands

3l

* N = total occurrences of operators
"N,= total occurrences of operands

For example the statement: f{x) = h(y) + 1, has two unique operators (= and +) and two
unique operands (f{x) and h(y)).

For a program P, Halstead defined the following metrics:

The length N of P: N:NI +N2 L (2.4)
The vocabulary p of P: p = HotH, (2.5
The volume V of P V=N * log2 n ... (2.6)
The program difficulty D of P: D = (M, =2)* (N~) 2D
The effort E to generate P is calculated as: E=D * V. (2.8)

The volume, vocabulary and length value can be viewed as different size measures. Take
the vocabulary metric for instance: It calculates the size of a program very different from
the LOC metric and in some cases it may be a much better idea to look at how many unique
operands and operators a module has than just looking at lines of code. If, let’s say a class,
consists of four methods (operands): A, B, C and D. The LOC and vocabulary metrics will
yield similar results, but if all four operands where implemented as A (four identical
methods) the LOC metric would stay unchanged while the vocabulary metric is divided by
four. The vocabulary metric shows the fact that: it is easier to understand a class with four
identical methods than one with four different. When it comes to the program difficulty and
effort measure, we will find them to be invalidated prediction measures, and that the theory

behind them has been questioned repeatedly (Magnus A. et. al. 2004).

The Halstead (1976) Software Science metrics are a significant step up in value. By
counting the number of total and unique operators and operands in the program, measures
are derived for program size, programming effort, and estimated number of defects.
Halstead metrics are independent of source code format, so they measure intrinsic attributes

of the software. Since different languages have different sets of operators. it isn't

32

immediately obvious that these measures can be applied across languages, but there's a
"language level" measure that can help with conversion. Halstead metrics are a bit
controversial, especially in terms of the psychological theory behind them, but they have
been used productively on many projects. The main drawback is that the mathematical
formulas of the major Halstead metrics are significantly removed from the code, so there
isn't a strong prescriptive component. Halstead metrics are very useful for identifying
computationally-intensive code with many dense formulas, which represent potential
sources of error that other complexity measures are likely to miss (Waston et. al. 1994).

Halstead's metrics are most often used during code development in large projects in order
to track complexity trends. A spike in Halstead metrics can signify a highly error-prone
module, for example. Use metrics to compare two high-level representations of a program,
both with the same semantics. Halstead’s metrics do not lend themselves well to this
problem. Halstead’s program volume metric is a measure of the minimum number of bits
required for coding a program. In the case of Java. non-local variables (either class fields or
static fields) and method names are preserved in the compiled byte code. A common Java
obfuscation technique is to rename these identifiers, often with shorter and more
incomprehensible names. This reduces the program volume but also reduces the ability of a
decompile to recover the full cognitive representation of the original program. Indeed.
many metrics are designed to compare large software projects in a very abstract way in

order to predict maintainability, reliability and/or programming effort (Naeem N. 2006).

2.6 Cognitive Weights Method

The cognitive weight of a software component without nested control structures is defined
as the sum of the cognitive weights of its control structures according to Table 2.1. It seems
to be a promising approach to use the ideas to define cognitive weights for Business
Process Models (BPMs). Table 2.1 shouid be tailored to the needs of BPMs: While
recursion does not play any role in business process modeling, it is necessary to consider
other concepts like cancellation or the multi-choice-pattern. The idea behind cognitive
weights is to regard basic control structures as patterns that can be understood by the reader

as a whole. This approach is based on automatically finding well-known architectural

3

patterns in a Unified Modeling Language (UML) model. The idea behind this approach is
that well-documented patterns have been found highly mature and using them helps to
improve code quality, understandability and maintainability. Obviously, this assertion
should be regarded with care: Architectural patterns are only useful if they are used by
experienced programmers in the right way, and an extensive use of patterns does not have
to mean anything for the quality of the code. So, if the approach is used, a deep knowledge
about the patterns and their correct usage is necessary. However, does not only discuss the
use of “good” design patterns, it also recognizes so called anti-patterns, i.e. commonly
occurring solutions to a problem that are known to have negative consequences. If such an
anti-pattern is found in the code, this can be regarded as a sign of bad programming (Gruhn
V. et. al. 2006).

Table 2.1: Basic control structures and its cognitive weights

Sequence (an arbitrary number of statements in a sequence without
branching)
Call of user-defined function

Branching with if-then or if-then-else

Branching with case (with an arbitrary number of selectable cases)

Iteration (for-do, repeat-until, while-do)

Recursive function call

Execution of control flows in parallel

£l A W W W NN

Interrupt

The existing measures for software complexity can be classified into two categories: the
macro and the micro measures of software complexity. Major macro complexity measures
of software have been proposed by Basili (1980) and by Kearney J. et al (1986). The
former considered software complexity as “the resources expended™(Basili V. 1980). The
latter viewed the complexity in terms of the degree of difficulty in programming (Kearney
J. et. al. 1986). The micro measures are based on program code, disregarding comments

and stylistic attributes. This type of measure typically depends on program size, program

34

flow graphs, or module interfaces such as Halstead's software science metrics and the most
widely known cyclomatic complexity measure developed by McCabe. However, Halstead's
software metrics merely calculate the number of operators and operands; they do not
consider the internal structures of software components; while McCabe’s cyclomatic
measure does not consider I/Os of software systems. In cognitive informatics, it is found
that the functional complexity of software in design and comprehension is dependent on
three fundamental factors: internal processing, input and output. Cognitive complexity
takes into account both internal structures of software and the I/Os it processes (Shao .
2003).

Complexity measure based on weighted information count of a sofiware and cognitive
weights has been developed by (Kushwaha D. et. al. 2003). Basic control structures (BCS)
such as sequence, branch and iteration are the basic logic building blocks of any software

and the cognitive weights (W_) of a software is the extent of difficulty or relative time and

effort for comprehending a given software modeled by a number of BCS’s. These cognitive
weights for BCS’s measure the complexity of logical structures of the software. Either all
the BCS’s are in a linear layout or some BCS’s are embedded in others. For the former
case, sum the weights of all the BCS’s and for the latter, cognitive weights of inner BCS’s

are multiplied with the weight of external BCS’s (Kushwaha D. et. al. 2006).

Shao and Wang (2003) defined the cognitive weight as a metric to measure the effort
required for comprehending a piece of software. Based on empirical studies, they defined
cognitive weights for basic control structures. Table 2.1 shows the basic control structures
and its cognitive weights which are a measure for the difficulty to understand a control
structure. The cognitive weight of a basic control structure is a measure for the difficulty to

understand this control structure.

http://www.tcpdf.org

‘e o* inghiialljl

4 DARALMANDUMAH

Apa M hay L all o cigp 82 alg. T

Measuring software complexity for software engineering quality
assurance

Wohaishi, Ahmad Muhammad Ali

Fahmy, Maged A.. Al Sultanny, Yas A.(Co-Advisor. Advisor)
2009

aolioll

1-155

736039

aueol> blw,

English

uiow>o dlw,

w2l aulzdl asol>

Wl wlwl)al ads

o=l

Dissertations

Ologleall LiglgiSi «oleo | dwrid cogwldl gl
https://search.mandumah.com/Record/736039

Ulgusll

HEWIN| V-1V

ton>l padlio
HEINVIVN P TR |
:&990
1olxaall

:MD 48,

i Sgizeall £9i
raelll

réodell)l
Aol

ra sl

gl

10loglendl aclgd

:&;_..'o|99
ol

‘ ‘ abgaxo dgazl gaox .nghaioll ,ls 2019 ©
aclb of Juoss cliSoy .abgano sl Bsi> gaor Ol lale il Bgi> ool go gdgall BVl sle sl aslio bslall oid
s (esug,SIVI 2yl of iVl gdlgo Jio) alsws STy inidl ol Jugmeil of gas)] gioug onsd sasaia)] plaziwl sslodl 0is

Langhiall ls ol il Bei> Lol o s gy pa

ol LAl Zyl_i.lbl

www.manat

https://search.mandumah.com/Record/736039

35

Chapter 3
Implementation of Measuring Object-Oriented

Programming Complexity

3.1 Introduction

In this chapter, a brief description on programming languages & Object-oriented
programming (OOP) and the development history is given. Then, two case studies to
measure software complexity are implemented and discussed. These two cases are linear
search and binary search algorithms. Each of them are implemented through writing
programs using C++, Java, and Visual Basic object-oriented programming languages.
Methods of measuring software complexity are used and evaluated. These methods include:
Counting LOC without comments, measured LOC+ comments, McCabe complexity.

Halstead method, and file size of program.

Object-oriented programming is a programming paradigm that uses "objects" and their
interactions to design applications and computer programs. OOP may be seen as a
collection of cooperating objects. as opposed to a traditional view in which a program may
be seen as a group of tasks to compute ("subroutines"). In QOP. each object is capable of
receiving messages, processing data, and sending messages to other objects. Each object
can be viewed as an independent little machine with a distinct role or responsibility. The
actions or "operators" on the objects are closely associated with the object. For example, in
OOP, the data structures tend to carry their own operators around with them (or at least
"inherit" them from a similar object or "class"). The traditional approach tends to view and
consider data and behavior separately (Woodmanl M. 1997). Programming techniques may
include features such as, encapsulation, modularity, polymorphism. and inheritance. It was
not commonly used in mainstream software application development until the early 1990s.
Many modern programming languages now support OOP. Object-oriented programming
can trace its roots to the 1960s. As hardware and software became increasingly complex.

researchers studied ways in which software quality could be maintained. (Schach S. 2002).

36

3.2 Most Common Used Programming Languages and History

The concept of objects and instances in computing had its first major breakthrough with the
PDP-1 system at MIT which was probably the earliest example of capability based
architecture. Another early example was Sketchpad made by Ivan Sutherland in 1963;
however, this was an application and not a programming paradigm. Objects as
programming entities were introduced in the 1960s in Simula 67, a programming language
designed for making simulations. The idea occurred to group the different types of ships
into different classes of objects, each class of objects being responsible for defining its own
data and behavior. Such an approach was a simple extrapolation of concepts earlier used in
analog programming (Benussi .. 1995).

The Smalltalk language, which was developed at Xerox PARC in the 1970s, introduced the
term Object-oriented programming to represent the pervasive use of objects and messages
as the basis for computation. Smalltalk creators were influenced by the ideas introduced in
Simula 67, but Smalltalk was designed to be a fully dynamic system in which classes could
be created and modified dynamically rather than statically as in Simula 67 (Jorgensen P.
2002).

Object-oriented programming developed as the dominant programming methodology
during the mid-1990s, largely due to the influence of C++. Its dominance was further
cemented by the rising popularity of graphical user interfaces, for which object-oriented
programming is well-suited. An example of a closely related dynamic GUI library and
OOP language can be found in the Cocoa frameworks on Mac OS X, written in Objective
C, an object-oriented, dynamic messaging extension to C based on Smalltalk. Object-
oriented features have been added to many existing languages during that time, including
Ada, BASIC, Lisp, Fortran, Pascal, and others. Adding these features to languages that
were not initially designed for them often led to problems with compatibility and
maintainability of code (Fateman R. 2000).

In the past decade Java has emerged in wide use partially because of its similarity to C and
to C++, but perhaps more importantly because of its implementation using a virtual
machine that is intended to run code unchanged on many different platforms. This last

feature has made it very attractive to larger development shops with heterogeneous

37

environments. Microsoft's NET initiative has a similar objective and includes/supports

several new languages, or variants of older ones {Gopal N. 2004).

3.2.1 C and C# Language

C is high-level programming language, which was developed in the 1970s in the Bell
Laboratory. C is the third try after two other similar programming languages, BCPL (Basic
Combined Programming Language) and B, did not meet expectations. C was used to write
the UNIX Operating System and works well within that operating system. C, which is
easier than assembly language but harder than other third-generation programming
languages, is still widely used by a large number of programmers.

C# (pronounced C Sharp) is a multi-paradigm programming language that encompasses
functional, imperative, generic, object-oriented (class-based), and component-oriented
programming disciplines. It was developed by Microsoft as part of the NET initiative and
later approved as a standard by ECMA (ECMA-334} and ISO (1SO/IEC 23270) (Schildt H.
1998).

3.2.2 Visual Basic, Early Versions

Although Visual Basic was not the first programming language designed to develop a
Windows application, it is perhaps the first Visual programming environment that has been
introduced to programmers. Since Visual Basic syntax is based on the early version of
BASIC, BASIC-A was a version that was developed for IBMT™PCs. Later on, Microsoft
developed GW-BASIC, which was bundled with MS-DOS Operating System for IBM
compatible machines. GW-BASIC was replaced by QBASIC (stands for Quick Beginner’s
All-purpose Symbolic Instruction Codes). QBASIC accompanied the Windows 93
Operating System package. Along with the development of Windows 3.0 in 1991, the first
official version of Visual Basic was developed. Visual Basic’s drag and drop features that
ran under the Windows operating systems created an easier development environment.
Although Visual Basic 6.0 became a very popular programming language. it was often

criticized for not being a fully object-oriented language. The NET version of this

38

programming language has corrected all of the object-oriented shortcomings found in

previous versions of Visual Basic (River C. 2006).

3.2.3 HTML Language

The Internet is a collection of computer networks that connects millions of computers
around the world. The World Wide Web is a client/server technology used to access a vast
variety of digital information from the Internet. Using a software client called a Web
browser, such as Microsoft® Internet Explorer, and a modem or other connection to an
Internet Service Provider (ISP), we can easily access text, graphics, sound, and other digital
information from practically any computer in the world that is running the appropriate

server software on the Internet.

The traditional stand-alone programming paradigms couldn’t meet the demands of this new
communication media. As a result, a new language was developed to facilitate
communications among users. The developers of this new language intended to keep it
simple and easy to learn. HTML, which stands for Hyper Text Markup Language, was
developed in the 1990s. This language uses tags for specific instructions, which are

translated into meaningful Web pages by special software called browsers (River C. 2006).

3.2.4 JavaScript

Although JAVA and JavaScript share a lot of similarities in both name and structures, they
are two different programming languages. JAVA is a stand-alone programming language
that can run on any platform. JavaScript, on the other hand, is a scripting language that
must be included within HTML codes and be processed by browsers. JavaScript was
developed by Netscape® in the 1990s to allow Web developers to add more interactive

features to their Web sites (Campione M. et. al. 2001).

3.2.5 VBScript

VBScript is a Microsoft Scripting language that is based on the Visual Basic programming

language and shares some similarities. Like JavaScript, VBScript was designed to help

39

Web developers add more interactive functions to their Web pages. VBScripts can be
viewed by the Internet Explorer browser, but Netscape doesn’t support it. Due to such

limitations, VBScript is not as commonly used as JavaScript.

3.2.6 Object-Oriented Programming

The terms that are associated with the object-oriented programming are (Forouzan B. et. al.

2001):

i. Object
Object-oriented programming refers to a program that uses objects, such as Textboxes,
Buttons, and Labels. Tools or controls are used to create these objects.

ii. Attributes or Properties
Attributes or properties are used to identify objects. Each object must have a name, color,
size, and other characteristics. Each object has several attributes or properties. A Textbox.

for example, has properties such as Name, BackColor, Size, Font, BorderStyle, and Text.

iii. Methods
Each object is designed to perform specific operations or actions. These actions are called
methods. Objects have standard methods that can be used by the programmers to do
specific tasks. For example, an object such as a button can have methods such as Refresh,

Hide, Show, Focus, and so on.

v. Events
Objects can react to the user’s input according to the evemr that the developer has
programmed for. For example, Click is one of Button’s many events that can be used by the
user to perform a task. The programmer has placed a set of codes within the event

subprocedure of the Exit button to fulfill certain request.

40

v. Classes and Instances
One of the important elements of object-oriented programming is c/ass. Think of a class as
a rubber stamp you have made for your name, address, and zip code. Any time you use this
rubber stamp, an identical instance of the information will be printed on paper. The class is
like a rubber stamp or template that maintains the properties and methods needed for each

object.

vi. Encapsulation
The objects communicate with the users through the interface that is designed by the
programmer. The user shouldn’t know what properties of the object have been used or what
kind of processing takes place behind the object. Encapsulation is used to hide the
properties and methods of the object.

vii. Inheritance
Inheritance will enable you to reuse an existing class. The terms parent class and child

class refer to the original and duplicated classes.

viii. Polymorphism

Poly in Greek means “many,” and morph means “forms.” This means different objects that
have methods and properties with the same name react to them differently. For example,
two different objects could have similar methods. Although the methods’ names are the

same, they function differently when vou execute the program.

3.2.6.1 Why Object-Oriented?

The industry is moving toward object-oriented design. Although the move was slow in the
beginning, it has received positive acceptance in recent years. However, with the popularity
of object-oriented programming languages such as JAVA, C++, CENET, and Visual
Basic.NET, object-oriented programming languages prove to be faster to learn and easier to

maintain. [n addition, object-oriented programming languages provide a way to break large

41

and sometimes difficult-to-manage programming projects into smaller modules that can be

managed easily (Dale N. 2000).

3.2.6.2 Object Oriented Programming Terminology

Class: A class is a definition for a combination of data and procedures which operate on
those procedures. Instances of other classes can only access that data or those procedures
via specified interfaces. A class acts as a template when creating new instances. That is, a
class does not hold any data, the data is held in the instance. However, the class specifies
what data will be held. The relationship between a class, its superclass and any subclasses

is illustrated in Figure 3.1.

Superclasss

»

Class

Subclass 1 Subclass 2 ... Subclass n

Figure 3.1: The relationship between Class, Superclass and Subclass

Subclass: A subclass is a class which inherits from another class. For example,
Undergraduate-Student was a subclass of Student. Subclasses are of course classes in their
own right. The term subclass merely indicates what is inherited by what. Any class can

have any number of subclasses.

Superclass: A superclass is the parent of a class. It is the class from which the current class

inherits. For example, Student class was the superclass of Undergraduate-Student.

Instance / Object: An instance is an example of a class. All instances of a class possess the
same data variables but have their own data in these data variables. Fach instance of a class

will also respond to the same set of requests.

42

Instance variable: This is the special name given to the data which is held by an object.
The “state” of an object at any particular moment relates to the current values held by its

instance variables. Figure 3.2 illustrates a definition for a class in pseudo code.

class Car extends Vehicle Class
Int milage; Instance
Int totalFuelUsed; [+ Variables/
String name; felds
define mpg()
begin

return milage / totalFuelUsed;

end e Methods

define name (aName)

begin _ Reference to the
self name=aName; ; thi
o object within
- which the method
executes
end Class;

Figure 3.2: A pseudo code definition of a class
Method: Method is the name given to a procedure defined within an object. The name
stems from its use in carly versions of Smalltalk where it was a method used to get an
object to do something\or return something.
Message: This is a request from one to another requesting some operation or order.

Self: This is reference to the object within which the method is executing.

Single/Multiple inheritance: Single and multiple inheritance refer to the number of

superclasses that a class can inherit from.

43

3.2.7 Comparison Between C# and JAVA Keywords

In this section keywords in C# and Java languages are compared as an example to show if
the number of keywords affect programming complexity. There are a large number of
syntactic similarities between Java and C#. Almost every Java keyword has a C#
equivalent. Table 3.1 shows the comparison between Java and C# keywords (Obasanjo D.
2007):

Tablg 31 _._Fa_'g p# ke

abstract Explicit object N/A This
as N/A Extern native operator N/A throw Throw
base Super Finally finally out N/A true True
bool boolean Fixed N/A override N/A try try
break break Float float params N/A typeof N/A
byte N/A For for private private unit N/A
case case Foreach N/A protected N/A ulong N/A
catch catch Get N/A public public | unchecked N/A
char char Goto goto readonly N/A unsafe N/A
checked N/A If if ref N/A ushort N/A
class class Implicit N/A return return using import
const const In N/A shyte byte value N/A
continue | continue Int int sealed final virtual N/A
decimal N/A Interface interface set N/A void void
default default Internal protected short short volatile volatile
delegate N/A Is instanceof sizeof N/A while while
do do Lock synchronized | stackalloc N/A : extends
double double Long long static static : implements
else else namespace package string N/A N/A strictfp
enum N/A New new struct N/A N/A throws
event N/A Null null switch switch N/A transient

From Table 3.1 found that there are 35 keywords with similar identification in both
languages C# and Java. Nevertheless, there are 15 keywords having different identification
from both languages for example base in C# language is represented with super in Java
language. Just like Java, C# has a single rooted class hierarchy where all classes in C# are
subclasses of System.Object the same way all Java classes are subclasses of
java.lang.Object. The methods of the two languages Object classes share some similarities
(e.g. System.Object's ToString() to java.lang.Object's toString()) and differences
(System.Object does not have analogs to wait(), notify() or notifyAll() in java.lang.Object).

In C#, the object class can either be written as object or Object. The lower case "object” is a
C# keyword which is replaced with the class name "System.Object" during compilation.

From Table 3.2, one can predicate that one of the reasons of software complexity’s the
absence of some keywords from the languages. From the program view it is easier to
programming when the keywords less. Regarding program execution, it will be more

complex with longer access time.

Table 3.2: Brief comparison between C# and Java languages keywords

The same keywords 35 35

The similar in function and different in o -
definition

Keywords found in C# and not in Java 34 N/A
Keywords found in Java and not in C# N/A 5
Total Keywords ” 50

3.3 Examples of Measuring Complexity for Software Program

Two case studies of linear search algorithm and binary search algorithm written through
object-oriented programming languages such as C++, Java, and Visual Basic were selected
to measure the complexity of each languages. The measurements were based on line of
program, LOC without comments, LOC+ comments, McCabe method, the program
difficulty using Halstead method and file size.

3.3.1 Case Study I (Linear Search Complexity)

Linear search algorithm is used as an example to compare the complexity of a program if
written using C++, Visual Basic, and Java programming languages. The listing of the main
program (test program) of the linear search was written in C++ is as shown below. The
method LinearSearch is not included in the comparison for simplicity. From Deitel’s book
How to program C++: Figure 3.3 shows the flow chart of the algorithm, Figure 3.4 shows
the flow graph of the algorithm.

45

1 /1 C++

2 // Linear search of an array.

3 #include <iostream>

4 using std::cout;

5 using std::cin;

6 using std::endl;

7

8 int linearSearch(const int [}, int, int); // prototype
9

10 int main()

11 {

12 const int arraySize = 100; // size of array a
13 int a[arraySize]; // create array a

14 int searchKey; // value to locate in array a
15

16 for (int i=0; i< arraySize; i++)

17 al i] =2 *i;// create some data

18

19 cout << "Enter integer search key: ":

20 cin >> searchKey:

21

22 // attempt to locate searchKey in array a

23 int element = lincarScurch(a, searchKey, arraySize);
24

25 // display results

26 if (element !=-1)

27 cout << "Found value in element " << element << endl;
28 else

29 cout << "Value not found" << endl;

30

31 return 0; // indicates successful termination

32 } // end main

46

For

(int1=0;1 < amraySize; 1++)

cout<< “Enterinteger search key"
cin,>>searchKey

.

element = linear Search (a, search kK, arraySize)

if
(element!=-1)

Figure 3.3: Main program- linear search flow chart written in C++ language

47

5 l For (nt 1 =0; 1 < amaySize; +)

cout<< “Enter nteger search key.”
oin,>>searchKey
element = linearSearch (a, searchKey, amaySize)

cout<< “Found value in element”

10 i cout<< “Value not found”

Figure 3.4: Main program- Linear search flow graph written in C++ language

48

Table 3.3 shows the complexity of the main program of the linear search written in C++

language. The table shows that the length in lines of the program as 32, and LOC without

comments as 20. The measured LOC+ comments is 7 where LOC+ comments, is that

mixed line of code with comments on the same line. The McCabe complexity is measured
as 4 while the program difficulty by Halstead method is 9.3. While the file size of this
program is 954 bytes.

Table 3.3: The complexity of the main program for linear search written in C++

Length (in lines) 32

LOC without comments 20
LOC + comments 7
McCabe complexity 4
The Program difficulty D (As per Halstead method) 9.3
File Size 954 bytes

The list of the main program (test program) of linear search written in Visual Basic is

shown below. The method LinearSearch is not used in the comparison for simplicity.

Figure 3.5 shows the flow chart of linear search algorithm from Deitel book “Visual Basic

2005 for Programmers”. Figure 3.6 shows the flow graph of the algorithm.

=0 oo~ L Wh)—

' Visual Basic
' Linear search of an array.
Public Class FrmLinearSearchTest

Dim arrayl As Integer() = New Integer(19) {}

' create random data

Private Sub btnCreate Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles btnCreate.Clic

Dim randomNumber As Random = New Random()
Dim output As String = ("Index" & vbTab & "Value" & vbCrLf)

' create string containing 20 random numbers

For i As Integer = 0 To arrayl.GetUpperBound(0)
arrayl(i) = ljandomNumber.Next.S OO%C

Noutput = (i & vbTab & arrayl(i) & vbCrLf)

ext

txtData.Text = output ' display numbers

txtinput.Text = "" ' clear search key text box

btnSearch.Enabled = True ' enable search button
End Sub ' btnCreate Click

' search array for search key

49

Private Sub btnSearch Click(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles btnSearch.Clic

' if search key text box is empty, display
' message and exit method
If txtInput. Text ="" Then
MessageBox.Show("Y ou must enter a search key.", "Error".
MessageBoxButtons.OK. MessageBoxlcon.Error)
Exit Sub
End If

Dim searchKey As Integer = Convert. Tolnt32(txtInput. Text)
Dim element As Integer = LincarScarch Scarci(searchKey, arrayl)

If element << -1 Then

EllblRes;ult.Text = "Found value in index " & element
se
IblResult. Text = "Value not found"

End If

End Sub ' btnSearch_Click

End Class ' FrmLinearSearchTest

50

Amayl=19
=0

array 1() = randomNumber Next(1000)
output &=(& vbTab & array1() & vbCrLf)
Km@uﬂxw{'mmmam kq‘
searchKey As Integer = Convert. Tolnt 32(txtInput Text)
element As Integer= LinearSearch Search(searchKey, array1)
[lblRemh.Tut-= *Found value in index * & element” IbiR esult Text = "Value nfmd"

Figure 3.5: Main program- Linear search flow chart written in Visual Basic language

51

Amy=19

Private Sub btnCreate_Click(ByVal sender As

System Object, ByVal e As System EventArgs)
Handles btnCreate. Click

randomNumber As Random = New Random()

output As String = (Tndex’ & vbTab &
7 A Wy § vhCILE)

e
6 ‘ Fori As Integer=0 To amray 1. GetUpperBound(0)
array 1) =randomNumber Next(1000) © |g

ctpur = & 6Tb & amy 1) £HCL) 2@ 10— o
txtlnput Text ="
MessageBox. Show(* You must enter a 9@ binSearch Enabled =True
search key.", "Error”, MessageB oxButtons. 1
OK.MGMGB«IGM.EHM) 1 Ifﬂﬂlplﬁ.Tﬂt‘"

14

IbIR esult Text = "Found value in index "
& element” 15

Figure 3.6: Main program- linear search flow graph written in Visual Basic languages

52

Table 3.4 shows the complexity of the main program linear search written in Visual Basic
language. The table shows that the length in lines of the program are 45, LOC without
comments are 27, and LOC + comments is 6. The McCabe complexity is 6 while the
program difficulty by Halstead method is 11.6. The file size of this program is 1789 bytes.

Table 3.4: The complexity of the main pro linear search written in Visual Basic

Length (in lines) 45
LOC without comments 27
LOC + comments 6
McCabe complexity 6

The Program difficulty D (As per Halstead method) 11.6
Size Memory 1,789 bytes

The list of the main program (test program) of linear search written in Java language is
shown below. The method LinearSearch is not used in the comparison for simplicity.
Figure 3.7 shows the flow chart of linear search algorithm from Deitel book “How to
program Java”. Figure 3.8 shows the flow graph of the algorithm.

// create Scanner object to input data
0 Scanner input = new Scanner(System.in);

1 //Java

2 // Sequentially Linear search an array for an item.
3 Import java.util.Scanner;

4

5 public class LinearSearchTest

S

7 public static void main(String args[])

8 {

9

1

12 int searchlnt; // search
13 int position; // location of search key in array

15 // create array and output it
16 LinearArray searchArray = new LinearArray(10);
17 System.out.println(searchArray);

19 // get input from user
20 System.out.print(

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

53

"Please enter an integer value (-1 to quit): ");
searchlnt = input.nextInt(); // read an int from user

// repeatedly input an integer; -1 will quit the program
while (searchlnt !=-1)
{

// search array linearly

position = searchArray./incarSearch(searchlnt);

// return value of -1 indicates integer was not found
if (position == -1)
System.out.printin("The integer " + searchint +
" was not found.\n");
else
System.out.println{ "The integer " + searchint +
" was found in position " + position + ".\n");

// get input from user
System.out.print(
"Please enter an integer value (-1 to quit): ");
searchInt = input.nextInt();
} // end while
} // end main
3 // end class LinearSearchTest

54

LinearArray =10

.

System.out.print("Please enter an integer value (-1 to quit): ")

!

searchInt = input nextInt

[position = search Array linearSearch(searchInt)]

if (position =-1)

System out printin("The integer " +
searchInt + “was not found \n"),

[System out pnntin(
searchInt +* was found in position * +

position + " \n"),

e integer " +

.

System.out.print("Please enter an integer value (-1 to quit): "),

searchInt = input.nextInt();

Figure 3.7: Main program- linear search flow chart written in Java language

55

1 ‘ Int searchint

2 ‘ Int position

. LinearArry =10

4 ‘ Systemn out printIn{ search Array)

searchlnt = input nextlnt

position = searchArray linear ;
Scarch(searchlnt) 8.‘7 e ‘-—

. 7 while (searchlnt I= -1

e @ - 10

if (position = -1}

gt

L JF

searchInt = nput nextInt(), L

10 System Out Pnntln("The nteger " + search Int +" was foundin poaton " + position + “ 'a").

5 System outpnnt(" Please enter aninteger value (-1 to quut))

11 System out print("Please enter an integer value (-1 to quit) "),

12 System out pnntin("Theinteger " + searchint + “was not found 0"),

Figure 3.8: Main program- linear search flow graph written in Java languages

56

Table 3.5 shows the complexity of the main program linear search written in Java
language. The table shows that the length in lines of the program as 44, LOC without
comments as 21, and LOC + comments as 6. The McCabe complexity is measured as 7
while the program difficulty as per Halstead method is 5.8. While the size memory of this
program is 1524 bytes.

Table 3.5: The complexity of the main progran

n linear search written in Java

Length (in ii:ies) |

LOC without comments

LOC 4+ comments

McCabe complexity

The Program difficulty D (As per Halstead method) 5.8

File size 1,524 bytes

Figure 3.9 shows the comparison between the object oriented language C++, Visual Basic,
and Java by using the main program of the linear search algorithm as a case study for

comparison.

50 ——
45
40 +
35
30 -

25 1

B+

B Visual Basic

w Java

0 K T T T
Lineof LOCwithout LOC+ McCabe TheProgram File size
program comments comments complexity difficultyD (Kbytes)

(Asper

Halstead

method)

Figure 3.9: Comparison the complexity between the object oriented language C++, Visual
Basic, and Java for linear search algorithm

57

3.3.2 Case Study 11 (Binary Search Complexity)

The binary search is the second case study taken to measure the complexity written in C++,
Visual Basic, and Java languages. The listing of the main program (test program) of the
binary search algorithm was written in C++ is shown below while the method binarySearch
is not used in the comparison for simplicity. Figure 3.10 shows the flow chart of the
algorithm from Deitel book “How to program C++". Figure 3.11 shows the flow graph of
the algorithm.

1 1/ C++

2 // BinarySearch test program.

3 #include <iostream>

4 using std::cin;

5 using std::cout;

6 using std::endl;

7

8 #include "BinarySearch.h" // class BinarySearch definition
9

10 int main()

11 {

12 int searchlnt; // search key

13 int position; // location of search key in vector

14

15 // create vector and output it

16 BinarySearch searchVector (15);

17 searchVector.displayElements();

18

19 // get input from user

20 cout << "\nPlease enter an integer value (-1 to quit): ";
21 cin >> searchint; // read an int from user

22 cout << endl;

23

24 // repeatedly input an integer; -1 terminates the program
25 while (searchlnt I=-1)

26 {

27 // use binary search to try to find integer

28 position = searchVector.h/navSearch(searchint),
29

30 // return value of -1 indicates integer was not found
31 if (position==-1)

32 cout << "The integer " << searchlnt << " was not found.\n":
33 else

34 cout << "The integer " << searchlnt

58

35 << " was found in position " << position << ".\n";
36

37 /1 get input from user

38 cout << ™n‘nPlease enter an integer value (-1 to quit): ";
39 cin >> searchlnt; // read an int from user

40 cout << endl;

4] } // end while

42

43 return 0;

44 } // end main

59

et

L

Searchnt

!

postion

.

Search Vector(15)

¥

Search Vector display Elements()

%

cout << "\nPlease enter an integer value (-1 to quit)”

.

-

éin>>setech Int s

searchlnt),

[position = searchVector binarySearch(]

cout<< “was found in position”

cout<<“The integer” “was not found”

|
s

|
»

cout << "\n\nPlease enter an integer value (-1 to quit)”;

.

cin >> searchlnt,

N

cout << endl,

Figure 3.10: Main program- binary search flow chart in C++ language

60

3 Search Vector(15)
4

4 Search Vector display Elements()

5
out << "\nPlease enter an integer value (-1 to quit)”

cin>>search Int

cout<<endl

While (searchInt I=-1)

18

15 ®

&

9 position = search Vector binarySearch(searchlnt),
10If (postion =-1)
11 cout<< “was found in position”
12 cout << "n\nPlease enter an integer value (-1 to quit).”,
13 cin >> searchInt,
14 cout << endl;

15 cout<< “The integer” “was not found”

Figure 3.11: Main program- binary search flow graph written in C++ languages

61

Table 3.6 shows the complexity of the main program binary search written in C++
language. The table shows that the length in lines of the program is 44, LOC without
comments as 25, and LOC + comments as 7. The McCabe complexity is measured as 7
while the program difficulty by Halstead method is 5.1. While the file size of this program
is 1393 bytes.

Table 3.6: The complexity of the main program bi search written in C++

Length (in lines) 44
LOC without comments 25
LOC + comments i
McCabe complexity 7
The Program difficulty D (As per Halstead method) 51
Size Memory 1,393 bytes

The list of the main program (test program) of binary search written in Visual Basic is
shown below. The method BinarySearch is not used in the comparison for simplicity.
Figure 3.12 shows the flow chart of binary search algorithm written in Visual Basic
language from Deitel book “Visual Basic 2005 for programmers”. Figure 3.13 shows the

flow graph of the algorithm.
1 ' Visual Basic
2 ' Binary search of an array using Array.BinarySearch.
3 Imports System
4
5 Public Class FrmBinarySearchTest
6 Dim arrayl As Integer() = New Integer(19) {}
7
8 ' create random data
9 Private Sub btnCreate_Click(ByVal sender As System.Object, _
10 ByVal e As System.EventArgs) Handles btnCreate.Click
11
12 Dim randomNumber As Random = New Random()
13 Dim output As String = ("Index" & vbTab & "Value" & vbCrLf)
14
15 ' create random array elements
16 For i As Integer = 0 To arrayl.GetUpperBound(0)

17 arrayl(i) = randomNumber Next(1000)

18
19
20
21
22
23
24
25
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

62

Next
Array.Sort(arrayl) ' sort array to enable binary searching
' display sorted array elements

For i As Integer = 0 To arrayl.GetUpperBound(0)
output &= (i & vbTab & arrayl1(i) & vbCrLf)

Next
txtData.Text = output ' displays numbers
txtInput.Text = "" ' clear search key text box

btnSearch.Enabled = True ' enable search button
End Sub ' btnCreate_Click

' search array for search key
Private Sub btnSearch_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnSearch.Click

'if search key text box is empty, display
" message and exit method
If txtInput.Text = "" Then
MessageBox.Show("You must enter a search key.", "Error", _
MessageBoxButtons.OK, MessageBoxIcon.Error)
Exit Sub
End If

Dim searchKey As Integer = Convert. Tolnt32(txtInput. Text)
Dim element As Integer = Array.BinarySearch(arrayl, searchKey)

If element >= 0 Then
IbIResult. Text = "Found Value in index " & element
Else
IbIResult. Text = "Value Not Found"
End If
End Sub ' btnSearch_Click

End Class ' FrmBinarySearchTest

63

Amayl=19

§
Amay! ()= randorm smber Array Sort{amayl) sort arrayto

Next(1000) enable binarysearching

B —

Tt Data Tex=outputtxt In put
Text="b tn Search

Output &=(1 &vbtab
dam| (1) b CrLf)

Message Box Show (* You must enter &
mmln'wlmm MKQMWCHH! To lnt3i
Butons Ok (xt nput Text) ement A ntege= Ay
3
1 Result Text="found vabue in mdes” & Result gz;'vwm
|

Figure 3.12: Flow chart for binary search code written by Visual Basic language

[T ——— 4 kS by e
1Y el hslegee0T amy . G UpperBond 0

Tt Data Tet= output
tut Input. Text='
10 b Search. EnabledeTre

Iftat oput Text=""'

13
10

9 Message Box Show (Toumust eater a search key. * "Esror”, message Box Buttons Ok Message Box lecn. Enver)
108earch Key As Integer=Convert To Int3 (st Input Text) Element As Integer= Arrap binary Search (aray! search Key)

121b Result Text="found value 1 mdex” &Element”
131b Resut Tewt="Velue not feund"

Figure 3.13: Main program- binary search flow graph written in Visual Basic languages

65

Table 3.7 shows the complexity of the main program of the binary search written in Visual
Basic language. The table shows that the length in lines of the program with comments as
53, LOC without comments as 31, and LOC+ comments as 5. The McCabe complexity is
measured as 9 while the program difficulty as per Halstead method is 10.1. The file size of
this program is 2026 bytes.

Table 3.7: The complexity of the main program bi search written in Visual Basic

Length (in lines) 53
LOC without comments 31
LOC + comments 5
McCabe complexity 9

The Program difficulty D (As per Halstead method) 10.1
Size Memory 2,026 bytes

The list of the main program (test program) of binary search written in Java is shown
below. The method BinarySearch is not used in the comparison for simplicity. Figure 3.14
shows the flow chart of binary search algorithm written in Java language from Deitel book
“How to program Java”. Figure 3.15 shows the flow graph of the algorithm.

1 //Java
2 // Sequentially Binary search an array for an item.
3 import java.util.Scanner;

ublic class BinarySearchTest

4
5p

6 {

7 public static void main(String args[])

8 {

9 // create Scanner object to input data

10 Scanner input = new Scanner(System.in);

11

12 int searchint; // search

13 int position; // location of search key in array

14

15 // create array and output it

16 BinaryArray searchArray = new BinaryArray(16);
17 System.out.printin(searchArray);

18

19 // get input from user

20 System.out.print(

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

66

"Please enter an integer value (-1 to quit): ");
searchint = input.nextInt(); // read an int from user

// repeatedly input an integer; -1 will quit the program
while (searchInt !=-1)

// use binary search to try to find integer
position = searchArray.hinarvSearch(searchint);

// return value of -1 indicates integer was not found
if (position ==-1)
System.out.println("The integer " + searchint +
" was not found.\n");
else
System.out.printin("The integer " + searchlnt +
" was found in position " + position + ".\n");

// get input from user
System.out.print(
"Please enter an integer value (-1 to quit): ");
searchlnt = input.nextInt();
} // end while

43 } // end main
44 } // end class BinarySearchTest

67

SearchInt
position

¥

BinaryArray searchArray = new BinaryArray(16)

"

System out println(searchArray),

-

System.out print("Please enter an integer value (-1 to quit). ")

N

searchInt = input nextInt(),

while
searchlnt I=-1)

position = searchArray binary
Search(searchlnt)

System out.println("The integer " +
searchInt + “was not found \n"),

System out printin(’ie integer " +
searchInt +* was found in position " +
position + " \n"),

l

l

[System.out.print("Please enter an integer value (-1to quit): ");]

-

Figure 3.14: Main program- binary search flow chart written by Java language

68

SearchInt

2 position
3 BinaryAmray searchAmray =new BinaryArray(16)
4 @ System out printin(searchAmay),
5 System out print(*Please enter an integer value (-1to quit) ")
6 searchInt = input nextInt(),
7 eobile (searchlat b= -1) 5
3 @——@’
9

8Position = searchAmray binary Search(searchlnt)
9if (position =-1)

10 System.out.prntin("The integer * + searchlnt +*as found in position * + position + " 'n"),
11 System out.pnintln(“The integer “ + searchInt + “was not found \n"),

12 System out.print("Please enter an integer value (-1 to quit). "); @
end

Figure 3.15: Main program- binary search flow graph written in Java languages

69

Table 3.8 shows the complexity of the main program of the linear search written in Java
language. The table shows that the length in lines of the program as 44, LOC without
comments as 24, and LOC + comments as 6. The McCabe complexity is measured as 7
while the program difficulty as per Halstead method is 6.4. The token measured for the
same example and found 133 whereas the size memory of this program is 1572 bytes.

Table 3.8: The complexity of the main program binary search written by Java

Length (in lines) 44
LOC without comments 24
LOC + comments 6
McCabe complexity 7

The Program difficulty D (As per Halstead method) 6.4
Size Memory 1,572 bytes

Figure 3.16 shows the comparison between the object oriented language C++, Visual Basic,
and Java, by using the main program of the binary search algorithm as a case study for

comparison.
60 == M P ——— P ‘
50 |
|
40 -
|
30 4
! uC+
2 ® Visual Basic
| = Java
10
0
Line of program LOC without LOC + McCabe The Program File size '
comments comments complexity difficulty D (As (Kbvtes) |
perHalstead ;
method)

Figure 3.16: Comparison the complexity between the object oriented language C++, Visual
Basic, and Java for binary search algorithm

70

In Table 3.9 shows the comparison between McCabe and Halstead methods for Linear
Search of an array taken in consideration three type of languages C++, Visual Basic and

Java.

Table 3.9: Comparison of McCabe vs. Halstead methods fqr linear search of an array

i /isual Basic | Java
McCabe Method 4 s -
Halstead's Method 9.3 116 53

In Table 3.10 there are comparison between McCabe and Halstead methods for Binary
Search of an Array taken in consideration three type of languages C++, Visual Basic and

Java.

Table 3.10: Comparison of McCabe vs. Halstead methods for Binary search of an array

e)

The below Figures 3.17 and 3.18 are showing the differences between McCabe and
Halstead measurement for Linear and Binary Search of an array for the three languages.

McCabe vs. Halstead methods for linear search
14

12

10

m McCabe Method
m Halstead's Method

C++ Visual Basic Java

Figure 3.17: Comparison of McCabe vs. Halstead for linear search of an array

71

]

McCabe vs. Halstead methods for binary search
10 |

IETR =3 = = :
} ' ' : E = NMcCabe Method
— o - = Halstead's Method
(¢]

CF Visual Basic Java

]

b

V]

Figure 3.18: Comparison of McCabe vs. Halstead methods for binary search of an array

3.4 Conclusion

In this chapter, a brief description about object oriented programming and the development
history of C++, Visual Basic, and Java languages is given. Two case studies to measure the
complexity of linear search algorithm and binary search algorithm are discussed. These
algorithm written by three most popular object oriented languages C++, Visual Basic, and
Java. The complexity to each of these examples is measured based on length in lines of
program, line of code (LOC) without comments, LOC + comments (LOCC), McCabe
method, the program difficulty using Halstead method and size memory. It is found that
McCabe method has various measuring value of complexity for C++, Visual Basic, and
Java languages for linear search and same measuring value for C++ and Java languages for
binary search as it measured and found the measured value for C++ and Java languages as
7. Though the measured complexity with McCabe method is higher for Visual Basic
languages with value equal to 9 in binary search. Using Halstead method implies various
measuring values of complexity regarding using different programming languages either in
linear or binary search cases. Other words, the measured values of complexity are different
for either linear or binary search from one language to another language means that if one
program is written in C++ languages then its measured complexity will be different with
other type of languages such as Visual Basic and Java.

http://www.tcpdf.org

‘e o* inghiialljl

4 DARALMANDUMAH

Apa M hay L all o cigp 82 alg. T

Measuring software complexity for software engineering quality
assurance

Wohaishi, Ahmad Muhammad Ali

Fahmy, Maged A.. Al Sultanny, Yas A.(Co-Advisor. Advisor)
2009

aoliodl

1-155

736039

aeol> pSlw,

English

s>l allw,

w2l gzl asol>

el wlwl)ul ads

o=l

Dissertations

Ologleall LixgleiSs coluo | dwrid coguwl=dl zwoly
https://search.mandumah.com/Record/736039

Ulgusll

HEWIN| V-1V

ton>l padlio
HEINVIVN P TR |
:8990
1olxaall

:MD 48,

i Sgizeall £9i
raelll

réodell)l
Aol

ra sl

gl

10loglendl aclgd

:&;_..'o|99
ol

‘ ‘ albgamo S9axll gos aoghiiall s 2019 ©
aclb of Juos cliSoy .abgao il Bgi> geo> 0l lole pinidl Boi> Llsl go gdsall Byl sle el aslio bslall oid
s (esuSIVI aupl ol iVl g8lgo o) @liawsg ST ae puisil of Jygmeidl of il gioug onid suazerid] plaziw dsloll 04a

ol LAl Zyl_i.lbl

Langhiall ls ol il Boi> Llxol o o gy

www.manal

https://search.mandumah.com/Record/736039

£

Chapter 4
Modification of Halstead Mathematical
Equation Complexity

Software complexity measurement by using Halstead method will be discussed in this
chapter. Halstead method relies on counting the number of operator through a program. A
brief discussion for add, multiplication, and division logic design is given to recognize the
function of each operator in terms of levels of abstraction, architectural, logical, and
geometrical. A modification to Halstead method is suggested based on the fact that
mathematical operator have different complexities. It is noted that when using Halstead
method for measuring software complexity that it only counts the number of operators
within LOC of a program regardless of the type of these operators. This means that the cost
of applying multiplication operator for example is the same of that of applying addition
multiplication. A big question is raised at that point. Multiplication operator is really
achieved using as repetitive addition in computers. Also, subtraction is achieved using twos
complement addition. Division is also achieved using sequential subtraction. Operators
should be given different weights regarding their types when measuring complexity. This
means that if a weight is given to addition operator then multiplication operator weight
should be given multiples of that of addition weight. The same is valid regarding division
operator; it should be given a weight which is a multiple of that of subtraction operator
weight. To clarify this, a discussion of combinatorial logic design for performing
mathematical operators inside computers is discussed through the following Sections.
Hardware circuits for performing these different mathematical operators are discussed. One
can notice that their hardware complexities are different from one operator to other. This
reflects the idea and strengthens the idea or the criticism raised by the researcher in this
thesis that every mathematical operator should be given a unique complexity weight rather
than only counting number of operators as that of Halstead. Also, processor type has a great
impact on calculating program complexity. The reason is that execution time for each

mathematical operator differs from a processor type to another as it is discussed and

73

clarified in the following Sections. The effect of execution time on adds, multiplication,
and division processes using three different generations of personal computer processors
namely: 80286, 80486 and Pentium are considered and discussed and used in modifying
Halstead method.

4.1 Combinational Logic Design

Circuit models can be classified in terms of levels of abstraction, architectural, logical, and
geometrical. Logic level model deals with all facets of combinational and sequential
circuits. Logic synthesis can be defined as the manipulation of functional specifications to a
model as an interconnection of primitives components. In other words, logic synthesis
determines the gate level structure of circuits. The classical logic synthesis algorithms
include the optimization of two quality measures, namely: area and performance (Sarif B.
2003).

4.1.1 Binary Adders

One of the most important tasks performed by a digital computer is the operation of adding
two binary numbers. A useful measure of performance is speed. Of course, speed can be
improved by using gate designs that favor speed at the expense of other measures, such as
power consumption. But for the logic designer, the important question is how to design an
adder to increase the speed, regardless of the type of gate used. It may be that increasing the
speed can be achieved at the expense of increasing circuit complexity. That is, there might
be several designs, each characterized by a certain speed and a certain circuit complexity
(Sarif B. 2003).

A judgment must be made as to the acceptable trade-offs between them. A symbolic
diagram representing a binary adder is shown in Figure 4.1. Each open arrowhead
represents multiple variables; in this case the inputs are two binary numbers. If each
number has » digits, then each line shown really represents » lines. The sum of two n-bit
numbers is an (n + 1)-bit number. Thus, S (sum) represents (n + 1) output lines. If this
circuit were designed by the methods, we would require a circuit with (» + 1) output

functions, each one dependent on 2n variables.

74

™
G :

Y) o

yi |:|'>

Ci

(2) (b)

Figure 4.1: Binary addition. (@) General adder. (b) Full adder of two 1-bit words.

4.1.2 Full Adder

An alternative approach for the addition of two »-bit numbers is to use a separate circuit for
each corresponding pair of bits. Such a circuit would accept the 2 bits to be added, together
with the carry resulting from adding the less significant bits. It would yield as outputs the 1-
bit sum and the 1-bit carry out to the more significant bit. Such a circuit is called a full
adder. A schematic diagram is shown in Figure 4.1. The 2 bits to be added are x; and y; ,
and the carry in is C;. The outputs are the sum S; and the carry out C,. The truth table for
the full adder and the logic maps for the two outputs are shown in Figure 4.2. The minimal
sum-of-products expressions for the two outputs obtained from the maps are (Sarif B.
2003);

Si = xiyiCp + xiCy + xiyC; + x9;C; ...(4.1)

Cin1 = xpi + xCi + yiCi =xyi + C{x; + y)) ...(4.2)

Each minterm in the map of S; constitutes a prime implicant. Hence, a sum-of-products

expression will require four 3-input AND gates and a 4-input OR gate. The carry out will

75

require three AND gates and an OR gate. Assume that each gate has the same propagation

delay 7,, then a two-level implementation will have a propagation delay of 21p.

&G X K & G

0 0 0 0 0

T e A .
S S e B -
EEE S e T e
B B TN %

(a)

(b)

YiGi

00

01

(¢)

Figure 4.2: Truth table and logical maps of the full adder. (a) Truth table.

(b) S; map. (c¢) Ci+; map.

In the map of the carry out, minterm m; is covered by each of the three prime implicants.

This is overkill; since m; is covered by prime implicant x;y;, there is no need to cover it

again by using it to form prime implicants with ms and ms. If there is some benefit to it, we

might use the latter two minterms as implicants without forming prime implicants with m,.

The resulting expression for C;.; becomes

Ci1 =xpi + Clxy +xi) =2 + Clx; + y)

..(4.3)

We already have an expression for S; in 4.1, but it is in canonic sum-of-products form. It

would be useful to seek an alternative form for a more useful implementation.

With the use of switching algebra, the expression for the sum can be converted to

&=L+M+G

..(4.9)

76

Using the expressions for §; and C;.; containing XORs, one can obtain the implementation
of the full adder shown in Figure 4.3. Notice that the circuit consists of two identical XOR-
AND combinations and an additional OR gate. The circuit inside each dashed box is shown
in Figure 4.3; it is named a half adder. Its only inputs are the 2 bits to be added, without a
carry in. The two outputs are (1) the sum of the 2 bits and (2) the carry out. Assuming that
an XOR gate (implemented in a two-level circuit) has a propagation delay of 21,, the full
adder in Figure 4.3 has a propagation delay of 4¢,, both for the sum and for the carry.
Hence, reducing the delay experienced by the carry of a full adder is a significant

improvement. This is an incentive in seeking other implementations of the full adder.

1, oo R e S i g i e 1

¥i

—— — —— — — — —

(&) ()

Figure 4.3: Full adder implemented with half adders. (@) Full adder. (b) Half adder. (c) Half
adder schematic diagram.

4.2 Effect of Microprocessors Type on Halstead Method

The Halstead method was previously introduced in Chapter 2. This method is studied and
analyzed throughout different generation of microprocessors. Halstead complexity metrics
were developed by the late Maurice Halstead (1976) as a means of determining a
quantitative measure of complexity directly from the operators and operands in the module
to measure a program module's complexity directly from source code(Magnus A. et. al.
2004).

b

There is evidence that Halstead measures are also useful during development, to assess
code quality in computationally dense applications. Because maintainability should be a
concern during development, the Halstead measures should be considered for use during
code development to follow complexity trends. Halstead’s software science attempted to
capture attributes of a program that paralleled physical and psychological measurements in
other disciplines. Tokens of the following categories are all counted as operands by
CMT++ (CMT++ is a code metric tool for C and C++) as shows in Table 4.1:

Table 4.1: Operands by CMT++

IDENTIFIER
all identifiers that are not reserved words
TYPENAME
Reserved words that speci e: bool, char, double, float, int, long,
TYPESPEC pocify o A *
: short, signed, unsigned, void. This class also includes some compiler
(type specifiers)
specific nonstandard keywords.
CONSTANT Character, numeric or string constants.

Tokens of the following categories are all counted as operators by CMT++ preprocessor

directives as shows in Table 4.2:

Table 4.2: rators by CMT++

SCSPEC Reserved words that specify storage class: auto, extern, inlin, register,
(storage class specifiers) | static, typedef, virtual, mtuable.
TYPE_QUAL

(type qualifiers) Reserved words that qualify type: const, friend, volatile.

Other reserved words of C++: asm, break, case, class, continue,
default, delete, do, else, enum, for, goto, if, new, operator, private,
protected, public, return, sizeof, struct, switch, this, union, while,
RESERVED namespace, using, Iry, caich, throw, const _cast, static_cast,
dynamic_cast, reinterpret_cast, typeid, template, explicit, true, false,
typename. This class also includes some compiler specific

nonstandard keywords.

One of the following: ! = % %= & && | &= () *

= = - - - - = . .
OPERATOR T B e P o oxowe

<<=<===>>=>>>>=?[]f\f\={}[|=

78

The following control structures case ... for (...), if (...), switch (...), while for (...), and
catch (...) are treated in a special way.

The colon and the parentheses are considered to be a part of the constructs. The case and
the colon or the for (...), if(..), switch(..), while for (..., andcatch(..), and the
parentheses are counted together as one operator.

The identification of operators and operands depends on the programming language used.
The measuring “Size of Vocabulary” and “Program Length” is rather self-explanatory. The
volume of a program is akin to the number of mental comparisons needed to write a
program of length N. It is supposed to correspond to the amount of computer storage
necessary for a uniform binary encoding. Thus, Halstead has proposed reasonable measures
of three internal program attributes that reflect different views of size. Table 4.3 shows
proposed examples with assumed values of operators and operands to measuring the
difficulty and effort by Halstead (equations 2.7 and 2.8) to show the effect of operators and
operands on the program complexity. The basic metrics for these tokens where:

S number of unique operators
= number of unique operands
* N, = total occurrences of operators
N = total occurrences of operands

Figure 4.4 is showing the comparison between the total number of operators and effort
taken from Table 4.3, according to Halstead method. It is clearly indicate that as long as

numbers of operators or operands are increased then the difficulty and effort of the program

increased.

79

complexity by Halstead method.

18.6
2.7 27 74.3
4.0 4.0 167.2
53 33 29712

12 1 23| 21.86
18 | 23 | 4179
24 123 | 5573

30 | 2.3 | 69.66 6.7 6.7 464.4

10.0 | 10.0 | 1044.9
133 1 133 | 18575

45 | 2.3 | 104.49
60 | 23] 13932

75 | 23 | 174.14 16.7 | 16.7 | 2902.4

9 | 2.3 | 208.97 20.0 | 20.0 | 4179.5

105 | 2.3 | 243.80 233 | 23.3 | 5688.7

120 | 2.3 | 278.63 26.7 | 26.7 | 7430.2

135 | 2.3 | 313.46 30.0 | 30.0 | 9403.8

150 | 2.3 | 348.29 33.3 | 33.3 | 11609.6

180 | 2.3 | 417.95 40.0 | 40.0 | 16717.9

210 | 2.3 | 487.60 46.7 | 46.7 | 22754.9

240 | 2.3 | 557.26 833 | 533 [129720.7

270 | 2.3 | 626.92 60.0 | 60.0 | 37615.2

300 | 2.3 | 696.58 66.7 | 66.7 | 46438.6

330 | 2.3 | 766.24 73.3 | 73.3 | 56190.7

Lhl bl nl n| ha] Lh| tial Lh]l ta] Lh] L] Lh] Lh]| ia] L] Lh] Lh| Lh] Lh| W
el el el el e e e e I R T S T B = e sy sy sy ey

WIWWIWIWVWIWIWIWIWIWIWWIWWWIWWWlWw]Ww]w

BRI RN R R RN RN R NN

360 | 2.3 | 835.89 80.0 | 80.0 | 66871.5

Nevertheless, Halstead method is not taken in consideration the type of operators which
have different execution time. For example, the execute time for multiplication function is
more than execute time for add function as shown in Table 4.4. The Table shows the
measurement of execution times for various computers. The 80286, 80486 and Pentium are
three generations of personal computers. The Halstead method modify by taken in
consideration the execution time for three types of microprocessor as shown in Table 4.4.
The execution time to the remaining microprocessor such as Pentium 4 could not get due to

security and know-how concept from the technology provider.

80

Table 4.4: Execation thnes e scuctll Sencttions of caspuons (Suaith 8. 1999)

1.6 ——
1.6 0.12
2.7 0.59 0.13
64 9.2 1.5
Nlvs E
80000 |
70000
60000
50000
= 40000 |
30000
20000 -
10000 +—
!

2 4 6 8 10 15 20 25 30 35 40 45 50 60 70 80 90 100110120
N1

Figure 4.4: Compare between the total number of operators and effort according to
Halstead method.

Table 4.5, Table 4.6 and Table 4.7 show examples according to modified method taken in
consideration the execution time for add, multiplication and division functions respectively

to 80286 microprocessor:

81

Table 4.5: Examples according to modified method taken in consideration the execution
time for add function to 80286 microprocessor.

273 2 5

2131 4 8 5 M4 123 334 110127 |27 89

e e e 5 216 [23| 502 |1.0] 40 | 40 | 201
'SEES 28 5 288 1231 669 |10} 53153] 357
2] 3|10 20 5 368 j231 530 |18 L67 | 6.7 | 557
2-1-3 115 | 30 5 540 123 1254 | 1.0 | 10.0 | 10.0 | 1254
2 13420 40 5 720 1231 1672 | 1011331133 2229
2:1-3 7 2550 5 90.0 |23 209.0 | 1.0 [16.7 | 16.7 | 3483
2] 313060 5 108.0 | 2.3 | 250.8 | 1.0 | 20.0 | 20.0 | 5015
24 3153 -1 5 126.0 | 2.3 | 292.6 | 1.0 | 23.3 | 23.3 | 6826
2 13|40 80 & 144.0 | 2.3 | 3344 [1.0]26.7 | 26.7 | 8916
2 13 14 a0 5 162.0 | 2.3 | 376.2 | 1.0 | 30.0 | 30.0 | 11285
213 130100 5 180.0| 23] 417.9 | 1.0] 33.3 | 33.3 | 13932
213 |60 |120 3 216.0 | 2.3 | 501.5 | 1.0 | 40.0 | 40.0 | 20061
213] 7 140 5 252.012.3] 585.1 | 1.0 | 46.7 | 46.7 | 27306
21318]1e 5 288.0 | 2.3 | 668.7 | 1.0 | 53.3 | 53.3 | 35665
2 FE3 |9 |180 5 324023 752.3 | 1.0 | 60.0 | 60.0 | 45138
2 | 3 |100]200 5 360.0 | 2.3 | 8359 | 1.0 | 66.7 | 66.7 | 55726
2- | 3 | 1220 5 396.0 | 2.3 | 919.5 | 1.0 | 73.3 | 73.3 | 67429
2 | 3 1120|240 5 432.0 [2.3 | 1003.1 | 1.0 | 80.0 | 80.0 | 80246

From Table 4.5, the Example Ex01 shows the number of unique operators is 2 and number
of unique operands is 3 as assumed in previous example on Table 4.3. Nevertheless, the
effect of execution time will be studied taken in consideration the execution time for add
function to 80286 microprocessor. Hence, the calculation based on the following formula:

N'=N"+N, ...(4.5)

Where N is the length add of program and N, is the total occurrence of operators for add.
From Table 4.4 the execution time for add function to 80286 microprocessor is 1.6
therefore, the total occurrence of operators for add on example Ex01 is:

N,"=2*1.6=3.2 Hence, N'=N;"+N;=32+4=72

82

Table 4.6: Examples according to modified method taken in consideration the execution
time for multiplication function to 80286 microprocessor.

158 123] 4.7 |10] 27 | 2.7 116
282 |23 655 |1.0] 40 | 40 262
3n6j23t 313 (10153 1 53 466
47 1231 109.1 [1.0] 6.7 | 6.7 728
70.5 |23 | 163.7 | 1.0 | 10.0 | 10.0 | 1637
9 123 2183 [1611331133] 2910
117523 | 272.8 | 1.0 | 16.7 | 16.7 | 4547
141 23] 3274 |1.0]20.0(20.0]| 6548
164.512.3 | 382.0 | 1.0 | 23.3]23.3| 8912
188 | 2.3 | 436.5 | 1.0 [26.7 | 26.7 | 11641
211.5]2.3 | 491.1 | 1.0 | 30.0 | 30.0 | 14733
235 |23 | 545.7 | 1.0 | 33.3 | 33.3| 18188
282 23| 654.8 | 1.0 [40.0 | 40.0 | 26191
329 |23 763.9 | 1.0 | 46.7 | 46.7 | 35649
376 |12.3| 873.0 | 1.0 | 53.3 | 53.3 | 46562
423 123 | 9822 [1.0 | 60.0 | 60.0 | 58931
470 | 2.3 |1091.3 1.0 | 66.7 | 66.7 | 72754
517 |2.3]12004 | 1.0]73.3|73.3| 88032
564 |2.3]1309.6] 1.0 80.0 | 80.0| 104765

50 | 100
60 | 120
70 | 140
80 | 160
90 | 180
100 | 200
110 | 220
120 | 240

BRI R R RN R RN
WlWwlWwWwlwlwlwlwlwlwWwlwWwlwlw|lwlwlwlw|w|w|w
£l W
(=) ¥
ol I
&l S
Lhjtnl al tial ial tal]l ih | La]] ta]l |]|] ta] ta] ta]] L] on

From Table 4.6, the Example Ex01 shows the number of unique operators is 2 and number
of unique operands is 3 as assumed in previous example on Table 4.3. Nevertheless, the
effect of execution time will be studied taken in consideration the execution time for
multiplication function to 80286 microprocessor. Hence, the calculation based on the

following formula:

N'=N/"+N, ..(4.6)
Where N” is the length multiplication of program and N;" is the total occurrence for

multiplication. From Table 4.4 the execution time for multiplication function to 80286

83

microprocessor is 2.7 therefore, the total occurrence operators for multiplication on

example Ex01 is:
Ny '=2%*2.7=54 Hence, N'=N,"+N,=54+4=94

Table 4.7: Examples according to modified method taken in consideration the execution
time for division function to 80286 microprocessor.

748 i 5 306.5 3 : : 409
2131 4 8 | 51266 23] 0130 j10] 27 | 27 1635
2 13] 6 112]15 139 1[23] 9195 110] 40 | 40 3678
2 13| 8 1615 52 ¥23) 12360 118] 53] 53 6539
21311012015 660123115325 [10]67] 6.7 H216
2 |3 |15]30]5]99% |23] 22987 |1.0]10.0|10.0]| 22987
2 | 3 |[20)]40| 5 |1320(23] 30649 | 1.0 133|133 | 40866
2 |3 1255 |5 |1650]23| 38312 |1.0]16.7|16.7| 63853
2 13 |30]60] 5 |1980 23] 45974 |1.0]20.0|20.0| 91948
2 13135715 23101231 5365,7 110123312331 125152
2| 3[40)80 | 5 [2640 (23] 61299 | 1.0|26.7]26.7 | 163464
213 [45]9 | 5 [2970 (2.3 | 6896.1 | 1.0 | 30.0 | 30.0 | 206884
2 |13 (50 |100] 5 [3300(23| 7662.4 | 1.0 | 33.3 | 33.3 | 255412
2 |3 |60 |120] 5 [3960 (23| 9194.8 | 1.0 |40.0 | 40.0 | 367793
2 |13 |70 |140] 5 |4620 (2.3 |10727.3|1.0]46.7]|46.7 | 500608
2 | 3|8 |160| 5 |5280(2.3]12259.8]1.0]53.3]53.3| 653855
2 | 3|9 |180| 5 |5940(2.3]13792.3]|1.0]60.0 | 60.0 | 827535
2 | 3 1100]200] 5 |6600]2.3|15324.7|1.0]66.7 | 66.7 | 1021648
2 13 |110]220] 5 | 7260 | 2.3 | 16857.2|1.0]73.3|73.3 | 1236195
2 | 3 1120|240 5 |7920|2.3|18389.7|1.0]80.080.0] 1471174

From Table 4.7, the Example Ex01 shows the number of unique operators is 2 and number
of unique operands is 3 as assumed in previous example on Table 4.3. Nevertheless, the
effect of execution time will be studied taken in consideration the execution time for
division function to 80286 microprocessor. Hence, the calculation based on the following
formula:

N'=N/+N, ..(4.7)

84

Where N is the length division of program and N, is the total occurrence of operators for
division. From Table 4.4 the execution time for division function to 80286 microprocessor
is 64 therefore, the total occurrence of operators for division on example Ex01 is:

N//=2*64=128 Hence, N=N/+N,=128+4=132

Figure 4.9 compare between the total number of operators and effort according to modified
method and taken in consideration the execution time for add, multiplication and division
function to 80286 microprocessor and found that there are diverse due to different
execution time of each function. Also, the Figure 4.5 shows that as number of operators
(N1) is increased, the effort (E) value will increased accordingly.

NIvwELE*SE

1600000

1400000
| 1200000

1000000 +—

—+— Add Effont |
—~-Mubip. Effonn |
&~ Division Effon

& 800000

4 6 B 10 15 20 25 30 35 ~l40 as s0 80 70 80 S0 100 110 120

Figure 4.5: Compare between the total number of operators and efforts according to
modified method to 80286 microprocessor.

Table 4.8, Table 4.9 and Table 4.10 show examples according to modified method taken in
consideration the execution time for add, multiplication and division functions respectively

to 80486 microprocessor:

85

Table 4.8: Examples according to modified method taken in consideration the execution
time for add function to 80486 microprocessor.

o BLi e 5 . 13.1
24,3 4 8 L5 81051197 10 2.7 | 2.7 52.5
2136 |12)5 P2ay2s: 285 j10]40] 40] 1181
213 8 |16 5 11696123 394 |1.0] 53 | 53 { 2100
213 |10120] 5 7212123 492 10| 67 | 67 | 3282
21315130 S 33181231 383 110]1001100] 7384
23120140} 514924 73194 |1.05133]133§ 13127
el 3 25| 5 53 1231125.1] 1.0 16.7 | 167 | 2051.0
2|3 |130|60]| 5 636 |23]|147.7]1.0]20.0]20.0] 2953.5
21313110]51M2[2311923]|18]1233]123.3] 40200
2| 3140 |8 | 5| 848 |23]196.9]1.0]26.7]|26.7| 5250.7
2 | 31459 | 5954 |23]221.5]1.0]30.0]30.0]| 6645.4
213501100 51 106 |2.3]246.1]1.0]333]33.3] 8204.1
2 | 3160 [120] 5 [1272]123]12953]1.040.0|40.0]11814.0
2 | 3|70 |140| 5 [148.4 |23 |344.6| 1.0 |46.7 | 46.7 | 16080.1
2 |38 |160| 5 [169.6]2.3|393.8]|1.0|53.3]53.3]21002.6
21319 |18] 5 |190.812.3 |443.0]1.0|60.0]60.0|26581.4
2 13 1100)1200] 5 | 212 |23 [492.2]|1.0|66.7]66.7 | 32816.6
2 |3 [110] 22015 72432 23 1 5413 1.0] 733 | 733 1 39708.1
2 |3 (120240 5 [254.4|23|590.7]|1.0 | 80.0| 80.0 | 47255.9

From Table 4.8, the Example Ex01 shows the number of unique operators is 2 and number
of unique operands is 3 as assumed in previous example on Table 4.3. Nevertheless, the
effect of execution time will be studied taken in consideration the execution time for add

function to 80486 microprocessor.

From Table 4.4 the execution time for add function to 80486 microprocessor is 0.12
therefore, the total occurrence of operators for add on example Ex01 is:
NI '=2*0.12=0.24 Hence, N'=N;"+N, =024 +4=4.24

86

Table 4.9: Examples according to modified method taken in consideration the execution
time for multiplication function to 80486 microprocessor.

2 | 5| 2 5 3 16.0
2131 4 8 5 1036 | 23] 241 § 1O 2.7 | 27 64.1
2131612 5 1554 123]36.1 |1.0| 40 | 40 | 1443
w0 [8 | 16 5 2072 1231481 [10] 53 | 53 | 2566
s a0 2e 5 259 |23]60.1 |1.0] 6.7 | 6.7 | 400.9
213 |15] 30 5 3885 [23]902 |1.0(10.0|10.0]| 902.1
213]20 | 40 9 518 12311203]110711331133] 1603.7
8 B el [5 64.75 12311503 | 1.0 | 16.7 | 16.7 | 2505.7
2 |3 | 30°] 60 5 77.7 |12.31180.411.0]20.0]20.0(3608.3
2= 13 |[E55-| 79 5 90.65 |23]2105]1.0]233]233] 49113
213|140 | 80 5 103.6 | 2.3 [240.6 | 1.0 | 26.7 | 26.7 | 6414.7
21 3 |45 | 9@ > 116.5512.3 |270.6 | 1.0 | 30.0 | 30.0 | 8118.6
213|500 5 129.5 | 2.3 | 300.7 | 1.0 | 33.3 | 33.3 | 10023.0
213 160|120 5 1554 |1 2.3 |360.8 1.0 | 40.0 | 40.0 | 14433.1
2:) 3) 10 iae 5 181.3 | 2.3 | 421.0 | 1.0 | 46.7 | 46.7 | 19645.1
2 |3 | 80 |160 3 207.2 | 2.3 |481.1]11.0]53.3]53.3 | 25658.9
Z13 1% |1% 5 233.1 | 2.3 | 541.2 1.0] 60.0 | 60.0 | 32474.5
2 13 | H01200 ¥ 259 |23[601.4]1.0]66.7]66.7 | 40092.0
221 3 FTE220 5 2849 |123]|661.5(11.0]73.3|73.3[48511.3
2 | 3 |120]240 5 3108 12.31721.7] 1.0 | 80.0 | 80.0 | 57732.4

From Table 4.9, the Example Ex01 shows the number of unique operators is 2 and number
of unique operands is 3 as assumed in previous example on Table 4.3. Nevertheless, the
effect of execution time will be studied taken in consideration the execution time for
multiplication function to 80486 microprocessor.

From Table 4.4 the execution time for multiplication function to 80486 microprocessor is
0.59 therefore, the total occurrence of operators for multiplication on example Ex01 is:
N;"'=2%0.59=1.18 Hence, N'=N,"+N,=1.18+4=5.18

87

Table 4.10: Examples according to modified method taken in consideration the execution
time for division function to 80486 microprocessor.

69.3
448 123 | 1040 |1.0] 2.7 | 2.7 277.4
672 |23 | 156.0 | 1.0| 4.0 | 4.0 624.1
896 |23 2080 |1.0] 53] 53 1109.6
112 1231 260.1 | 1.0 67] 67 | 1733.7
168 | 2.3 | 390.1 | 1.0 | 10.0 | 10.0 | 3900.8
224 123 520.1 |1.0|13.3]13.3| 6934.8
280 | 2.3 | 650.1 | 1.0 | 16.7 | 16.7 | 10835.7
336 (2.3] 780.2 | 1.0 1 20.0 | 20.0 | 15603.4
392 £23] 9102 11.0]23.3 |23.3 | 212379
448 |12.311040.2 | 1.0 | 26.7 | 26.7 | 27739.3
504 (23111703 |1.0130.0]30.0 | 35107.6
560 | 2.3 113003 |1.0]33.3|33.3] 43342.7
672 |12.3]1560.3 | 1.0 | 40.0 | 40.0 | 62413.4
784 123118204 | 1.0 | 46.7 | 46.7 | 84951.6
896 |12.3]2080.41.0]53.3]53.3]110957.2
1008 | 2.3 | 2340.5 | 1.0 | 60.0 | 60.0 | 140430.2
1120 | 2.3 | 2600.6 | 1.0 | 66.7 | 66.7 | 173370.6
1232 | 2.3 | 2860.6 | 1.0 | 73.3 | 73.3 | 209778.5
1344 | 2.3 | 3120.7 | 1.0 | 80.0 | 80.0 | 249653.7

50 | 100
60 | 120
70 | 140
80 | 160
90 | 180
100 | 200
110 | 220
120 | 240

| o] o] o] o] o] o] o] o] o]] o] o] o]] o]] o] o
w| w] vl w] w|w] w]w]w] vl vl w] vl vl vl welwlwe
lw
=1 K
ool ~1
=
|] k] k] k] v u] n] u] n]lvn] k] n] vl n]n]u]v] vl v

From Table 4.10, the Example Ex01 shows the number of unique operators is 2 and number
of unique operands is 3 as assumed in previous example on Table 4.3. Nevertheless, the
effect of execution time will be studied taken in consideration the execution time for
division function to 80486 microprocessor.

From Table 4.4 the execution time for division function to 80486 microprocessor is 9.2

therefore, the total occurrence of operators for division on example Ex01 is:

N/=2%92=183 Hence, N=N/+N,=184+4=224

88

Figure 4.6 compare between the total number of operators and effort according to modified
method and taken in consideration the execution time for add, multiplication and division
function to 80486 microprocessor as we did previously for 80286 microprocessor and
found that there are diverse in this case also due to different execution time of each function
as mentioned before. Also, the Figure 4.10 shows that as number of operators (N1) is
increased, the effort (E) value will increased accordingly.

NlvsE+,E* & E
300000 :

‘ 250000 +— - -
1 | F,

200000 | V.

| =1 150000 -+ Camee o —+— Add Effont

~— Nultip Effort
= Division Effont

100000

50000 +————————

& & 10 1S 20 25 30 35 40 45 50 S0 70 S0 §0 100 110 120
N1

3]

Figure 4.6: Compare between the total number of operators and efforts according to
modified method to 80486 microprocessor.

Table 4.11, Table 4.12 and Table 4.13 show examples according to modified method taken
in consideration the execution time for add, multiplication and division functions

respectively to Pentium microprocessor.

89

Table 4.11: Examples according to modified method taken in consideration the execution
time for add function to Pentium microprocessor.

12.6
50.5
1224 |23 | 284 | 1.0| 4.0 | 40 | 113.7
16323231 379 | E0] 53 | 53 | 202.1
204 [23| 474 |10 6.7 | 6.7 | 3158
306 | 23] 71.1 |1.0]10.0|10.0| 710.5
40.8 |23 947 | 1.0 13.3|13.3 | 1263.1
51 (231184]1.0(16.7]16.7| 1973.6
61.2 | 2.3 |142.1]1.0]20.0|20.0| 2842.0
714 |23 1658 1.0 233 |23.3 | 3868.3
81.6 |2.3]189.5|1.0]26.7|26.7| 5052.5
91.8 | 2.3]213.2] 1.0 | 30.0 | 30.0 | 6394.6
102 123]236.8|1.0]33.3|33.3| 78%4.6
122.412.3|284.2]1.0 [40.0 | 40.0 | 11368.2
142.8 | 2.3 [331.6 | 1.0 [46.7 | 46.7 | 15473.3
163.2 123 | 3789] 1.0] 53.3 | 53.3 | 20210.1
183.6 | 2.3 [426.3 | 1.0 | 60.0 | 60.0 | 25578.4
204 |231473.7]|1.0]66.7|66.7 | 31578.2
2244123 (521.01.0 733|733 |38209.6
2448 | 2.3 | 568.4 | 1.0 | 80.0 | 80.0 | 45472.6

hlun|l ta]l L] a] a] n] h| h| Lh] Lh] Lh| L] h]| Lh] Lh| Lh| Lh] Lh] La

WlW W W WIWIWIWIWIWIWIWWIWWIWIWlWlWwW|Ww

From Table 4.11, the Example Ex01 shows the number of unique operators is 2 and number
of unique operands is 3 as assumed in previous example on Table 4.3. Nevertheless, the
effect of execution time will be studied taken in consideration the execution time for add
function to Pentium microprocessor.

From Table 4.4 the execution time for add function to Pentium microprocessor is 0.04
therefore, the total occurrence of operators for add on example Ex01 is:
N;"=2*0.04=0.08 Hence, N'=N;"+N,=0.08 +4=4.08

90

Table 4.12: Examples according to modified method taken in consideration the execution
time for multiplication function to Pentium microprocessor.

13.2
852 123 198 [1G] 2.7 | 2.7 52.8
12.78 | 23] 29.7 | 1.0 40 | 40 | 118.7
Hd L2350 1 0L 55 | 53 1 2110
213 1231495 1 1.0] 6.7 | 6.7 1 3297
3195|123 742 | 1.0]110.0]| 10.0| 741.9
426 [23] 989 |1.0}13.3]13.3] 13189
5325123 1123.6]1.0]167] 16.7 | 2060.7
639 | 2.3 |148.4 | 1.0 20.0 { 20.0 | 2967.4
7455123 |173.1 | 1.0]23.3 | 23.3 | 4039.0
852 |23|197.8]|1.0]26.7|26.7| 5275.4
95.8512.31222.6 (1.0 | 30.0 | 30.0 | 6676.7
106.5]2.31247.3 | 1.0 | 33.3 | 33.3 | 8242.8
127.8 [2.3 1 296.7 | 1.0 | 40.0 | 40.0 | 11869.7
149.1 | 2.3 |1 346.2 | 1.0 | 46.7 | 46.7 | 16156.0
1764123]39.7] 1.0]533 | 533 | 21101.7
191.7 [2.3 | 445.1 | 1.0 | 60.0 | 60.0 | 26706.8
213 2314946]1.066.7|66.7|32971.4
2343123 |544.0]1.073.3|73.3 398954
2556 2.3 1593.5(1.0]80.0 | 80.0 | 47478.8

50 | 100
60 | 120
70 | 140
80 | 160
90 | 180
100 | 200
110 | 220
120 | 240

IR R R RN NN
LS]
wn
~]
=]
Lthlwnl il il h] n]]l L] h] h] h] La| La]l Lh] Lh] Lh] Gh] h] Ln

WIWWIWIWIWIWIWIWWIWIWIWIWIWIWIWlWlWl W
-3
o
o0
<

From Table 4.12, the Example Ex01 shows the number of unique operators is 2 and number
of unique operands is 3 as assumed in previous example on Table 4.3. Nevertheless, the
effect of execution time will be studied taken in consideration the execution time for
multiplication function to Pentium microprocessor.

From Table 4.4 the execution time for multiplication function to Pentium microprocessor is
0.13 therefore, the total occurrence of operators for multiplication on example Ex01 is:
Ni"=2*0.13=0.26 Hence, N'=N/"+N;=026+4=426

91

Table 4.13: Examples according to modified method taken in consideration the execution
time for division function to Pentium microprocessor.

207 3 2] 217
Z-F31-4 8 5 M- 1337 5 118) 27 | 27 86.7
213 & il 5 21 |23]| 488 |1.0] 40 | 40 | 1950
»48 8 |16 5 28 [23] 650 |10} 53 | 53 | 3467
Pie e L 5 35 123|813 |10] 67 { 6.7 | 54138
21315154 5 525 123012191 10711001 10.07 12199
213 [26 14D 5 ™ 12311625110 113311337 2167.1
205 |25 F 30 5 87.5 [231208211.0] 1671 16.7 1 3386.1
213 | 30.] &0 2 105 [2.3|243.8(1.020.0]|20.0| 4876.0
213 17 5 1225123 (2844 1.0 | 23.3 | 23.3 | 6636.8
213 | 40|80 5 140 |2.3|325.11.0]26.7|26.7| 8668.5
2053 4915 5 157.512.3 |365.7 | 1.0 | 30.0 | 30.0 | 10971.1
2 | 3| 30 |'108 5 175 [2.3 14063 | 1.0]33.3|33.3]13544.6
213 060 | 120 ! 210 | 2.3 |1487.6 | 1.0 | 40.0 | 40.0 | 19504.2
2| 3|70 |140 5 245 | 2.3 |568.9 | 1.0 | 46.7 | 46.7 | 26547 .4
21 3 180|160 3 280 | 2.3|650.11.0f53.3]53.3]34674.1
213]90|180 D 315 |23 731.4| 1.0 | 60.0 | 60.0 | 43884.4
2 | 3 | 1001200 5 350 | 2.3 |812.7|1.0]66.7 | 66.7 | 54178.3
21 3 [Ho% 220 5 385 |23 18939 | 101733733 | 655558
213 |120|240 5 420 |23 (9752 1.0 80.0 | 80.0 | 78016.8

From Table 4.13, the Example Ex01 shows the number of unique operators is 2 and number
of unique operands is 3 as assumed in previous example on Table 4.3. Nevertheless, the
effect of execution time will be studied taken in consideration the execution time for
division function to Pentium microprocessor.

From Table 4.4 the execution time for division function to Pentium microprocessor is 1.5
therefore, the total occurrence of operators for division on example Ex01 is:

N/=3%i5=3 Hence, N=N/+N;=3+4=7

92

Figure 4.7 compare between the total number of operators and effort according to modified
method and taken in consideration the execution time for add, multiplication and division
function for Pentium microprocessor as did previously for 80286 and 80486
microprocessors and found that there are various in this case also due to different execution
time of each function. Also, the Figure 4.11 shows that as number of operators (N1) is
increased, the effort (E) value will increased accordingly.

| N1vsE+ E*& E/

e =

£0000
70000 +
60000 +———

50000 -

—o— Add Effont
40000

—— Muitip Effont
30000 - #— Division Effort
20000
10000 |

- 4] 8 10 15 20 25 30 35 40 45 50 60 70 80 90 100 110 120
N1

Figure 4.7: Compare between the total number of operators and efforts according to
modified to Pentium microprocessor.

4.3 Conclusion

Software complexity measure using Halstead method is exercised in this chapter. It is
found that as long as number of operators or operands get increased the difficulty and effort
of the program is increased as declare by Halstead method. Moreover, Halstead method
does not take into consideration the type of operators which have different execution time.
Investigation for the execution time for addition, multiplication, and division functions
shows that they are different for each function. Also the factors like, vocabulary, volume,
difficulty, and effort are different for one function to another. The experiment is done for
three different generations of personal computers namely: 80286, 80486, and Pentium.

http://www.tcpdf.org

‘e o* inghiialljl

4 DARALMANDUMAH

Apa M hay L all o cigp 82 alg. T

Measuring software complexity for software engineering quality
assurance

Wohaishi, Ahmad Muhammad Ali

Fahmy, Maged A.. Al Sultanny, Yas A.(Co-Advisor. Advisor)
2009

aoliodl

1-155

736039

aeol> pSlw,

English

s>l allw,

w2l gzl asol>

el wlwl)ul ads

o=l

Dissertations

Ologleall LixgleiSs coluo | dwrid coguwl=dl zwoly
https://search.mandumah.com/Record/736039

Ulgusll

HEWIN| V-1V

ton>l padlio
HEINVIVN P TR |
:8990
1olxaall

:MD 48,

i Sgizeall £9i
raelll

réodell)l
Aol

ra sl

gl

10loglendl aclgd

:&;_..'o|99
ol

‘ ‘ albgamo S9axll gos aoghiiall s 2019 ©
aclb of Juos cliSoy .abgao il Bgi> geo> 0l lole pinidl Boi> Llsl go gdsall Byl sle el aslio bslall oid
s (esuSIVI aupl ol iVl g8lgo o) @liawsg ST ae puisil of Jygmeidl of il gioug onid suazerid] plaziw dsloll 04a

ol LAl Zyl_i.lbl

Langhiall ls ol il Boi> Llxol o o gy

www.manal

https://search.mandumah.com/Record/736039

93

Chapter 5
Software Complexity Based on Cognitive Weights

5.1 Introduction

Cognitive weight is a metric to measure the effort required for comprehending a piece of
software. Cognitive weights are the basic control structures (BCS). Table 5.1 shows the
basic control structures and its cognitive weights which are a measure for the difficulty to
understand a control structure (Shao J. et. al 2003).

Table 5.1: Definition of BCSs and their equivalent cognitive weights (Wz)

Sequence

(SEQ)

If-then-[else]
(ITE)

Case
(CASE)

!
/\
)
B
P
D

Repeat-until
(R1)

while-do
(RO)

94

Continue Table 5.1: Definition of BCSs and their equivalent cognitive weights (Wz)

Function G
call(FC)
Recursion 3
(REC)
Parallel

4
(PAR)
Interrupt %
(INT)

The cognitive weight of a software component without nested control structures is defined
as the sum of the cognitive weights of its control structures according to Table 5.1. The
idea behind cognitive weights is to regard basic control structures as patterns that can be
understood by the reader as a whole. This approach is based on automatically finding well
known architectural patterns in a UML model. The idea behind this approach is that well
documented patterns have been found highly mature and using them helps to improve code
quality, understandability and maintainability. Obviously, this assertion should be regarded
with care: Architectural patterns are only useful if they are used by experienced
programmers in the right way, and an extensive use of patterns does not have to mean
anything for the quality of the code. So, if the approach is used, a deep knowledge about
the patterns and their correct usage is necessary. Cognitive Informatics is a new research

area that combines concepts from cognitive sciences and informatics (Cardoso 2006).

95

Cognitive Weights of a Software Basic control structures (BCS) such as sequence, branch
and iteration are the basic logic building blocks of any software and the cognitive weights
(Wc) of a software is the extent of difficulty or relative time and effort for comprehending a
given software modeled by a number of BCS's. These cognitive weights for BCS's measure
the complexity of logical structures of the software. Either all the BCS's are in a linear
layout or some BCS's are embedded in others. For the former case, the weights of all the
BCS's are summed and for the latter, cognitive weights of inner BCS's are multiplied with
the weight of external BCS's (Klemola T. 2000).

An important issue encountered in software complexity analysis is the consideration of
software as a human creative artifact and the development of a suitable measure that
recognizes this fundamental characteristic. The existing measures for software complexity
can be classified into two categories: the macro and the micro measures of software
complexity. Major macro complexity measures of software have been proposed by Basili
and Kearney in, 1980. They viewed the complexity in terms of the degree of difficulty in
programming. The micro measures are based on program code, disregarding comments and
stylistic attributes. This type of measure typically depends on program size, program flow
graphs, or module interfaces such as Halstead's software science metrics and the most
widely known cyclomatic complexity measure developed by McCabe. However. Halstead s
software metrics merely calculate the number of operators and operands; they do not
consider the internal structures of software components; while McCabe’s cyclomatic
measure does not consider 1/0s of software systems. In cognitive informatics, it is found
that the functional complexity of software in design and comprehension is dependent on
three fundamental factors: internal processing, input and output. Cognitive complexity is a
measure of the cognitive and psychological complexity of software as a human intelligence
artifact. Cognitive complexity takes into account both internal structures of software and
the 1/0s it processes (Boy G. 2005).

96

5.2 The Cognitive Weight of Software (Cognitive Functional Size)

Cognitive complexity is related to cognitive psychology that aims at studying, among other
things, thinking, reasoning, and decision making. The understanding of cognitive
complexity is to divide the memory into long term and short term memory. The short term
memory limit the duration of storage to less than about 30 seconds whereas the long term
memory can last as little as 30 seconds or as long as decades. The chunk of processes that

can be captured and stored by a short term memory would be determined as meaningful
(Abdul Ghani A. et. al. 2008).

To comprehend a given program, the focus should be on the architecture and basic control
structures (BCSs) of the software. BCSs are a set of essential flow contro] mechanisms that
are used for building logical software architectures. Three BCSs are commonly identified:
the sequential, branch, and iteration structures. Although it can be proven that an iteration
may be represented by the combination of sequential and branch structures, it is convenient
to keep iteration as an independent BCS. In addition, two advanced BCSs in system
modeling, known as recursion and paraliel, have been described by Hoare, 1987. Wang in
2003 extended the set of BCSs to cover function call and interrupt. The cognitive weight of
software is the degree of difficulty or relative time and effort required for comprehending a
given piece of software modeled by a number of BCSs. The five categories of BCSs
described above profound architectural attributes of software systems, where the equivalent
cognitive weights (W} of each BCS for determining a component’s functionality and
complexity are defined based on empirical studies in cognitive informatics (Wang Y.

2003).

There are two different architectures for calculating Weights of a Software Basic control
structures (Wbces): either all the BCSs are in a linear layout or some BCSs are embedded in
others. For the former case, we may sum the weights of all n BCSs: for the latter. we can
multiply the cognitive weights of inner BCSs with the weights of external BCSs. In a
generic case, the two types of architectures are combined in various ways. Therefore a

general method can be defined as follows, the total cognitive weight of a software

97

component, We, is defined as the sum of the cognitive weights of its q linear blocks
composed of individual BCSs. A component’s cognitive functional size is found to be
proportional to the total weighted cognitive complexity of all internal BCSs and the number
of inputs (N;) and outputs (N,). In other words, CFS is a function of the three fundamental
factors: W, N;, and N,. Thus, an equivalent cognitive unit of software (CWU) can be
defined as the cognitive weight of the simplest sofiware component with only a single [/O
and a linear structured BCS. The cognitive functional size of a basic software component
that only consists of one method, Sy, is defined as a product of sum of inputs and outputs

(Ni«) and the total cognitive weight, i.e.,

Se=(N, + No) * W, (5.1)

5.3 Formal Description of Software Cognitive Complexity

Software quality, from a cognitive informatics point of view, is defined as the
completeness, correctness, consistency, feasibility, and verifiability of the software in both
specification and implementation, with no misinterpretation and no ambiguity. Therefore.
quality software relies on the explicit description of three dimensional behaviors known as
the architecture, static behaviors, and dynamic behaviors. Program comprehension is then a
cognitive process to understand a given software system in terms of these three dimensions
and their relationships.

Formal methods provide a rigorous way to describe software systems in order to ensure a
higher quality of design and implementation. It is found that the complexity of software can
be analyzed on the basis of formal specifications early in the development process before
code is available. Real-time process algebra is used to demonstrate how the new
measurement of software complexity can be analyzed based on formal specifications.
Conventional forma! methods are based on logic and set theories that lack the capability to
describe software architectures and dynamic behaviors. Real Time Process Algebra
(RTPA) is designed to describe and specify architectures and behaviors of software systems
formally and precisely. RTPA models 16 meta processes and 16 process relations, as

partially shown in Table 5.1. A meta process is an elementary and primary process that

98

serves as a common and basic building block for a software system. Complex processes can
be derived from meta processes by a set of process relations that serves as the process
combinatory rules. RTPA has been developed as an expressive, easy-to-comprehend, and
language-independent notation system, and a specification and refinement method for
software description and specification. Based on the above analysis, the cognitive
functional size is feasibly obtained to measure software complexity. Due to the precision
and rigorousness of RTPA, the measurement of the complexity of software systems can be

obtained in an early phase of system development.

5.4 Robustness of the Cognitive Complexity Measure

To analyze the robustness of the new measure of cognitive functional size (S and its
relationship with the physical size of software (S,), a large set of examples and
experimental have carried out and anaiysis. [n this subsection, 30 programs are selected
from Deitel and Deitel book “C++ How to Program™ edition 2007. Each program is
analyzed in terms of the physical size (with the unit known as lines of code or LOC) and

cognitive functional size as shown in Table 5.2.

Figure 5.1 shows Sy and Sp to the (30) programs. The physical size (S o) of software, or
program length, can be used as a predictor of program characteristics such as effort and
difficulty of maintenance. However, it characterizes only one specific aspect of size.
namely the static length, because it takes no account of functionality. The cognitive
functional size (S is concerned with functional and cognitive complexity. An interesting
relationship between S.and Sp, known as coding efficiency (E) can be derived as shown

below:
E.=S./S [CWU/LOC] (5.2
Example Pl shows that physical size (S,) equal to 10 CWU and the function size {(Sy) is

equal to 6 LOC. Therefore, from equation 5.1 we can calculate the coding efficiency which
will be 0.6 CWU/LOC. Figure 5.1 demonstrates that the trends of both physical size and

99

cognitive functional size follow basically the same pattern. As the physical size increases,
so does the corresponding cognitive functional size. It is noteworthy that there are four

points for which the cognitive functional size goes up sharply.

Table 5.2: Analysis of the physical and functional sizes

21 10 4 i 1 6
20 i 2 2 1 4
23 8 0 6 1 6
27 12 2 1 T 21
37 20 5 2 11 77
18 6 1 2 1 3
12 3 0 1 1 1
58 34 ¥ 2 21 189
22 9 1 1 6 12
25 10 2 1 6 18
26 12 0 10 1 10
19 6 0 2 1 2
27 14 1 6 1 7
51 26 1 12 1 13
28 7 0 2 1 2
40 19 1 10 1 11
38 18 0 11 1 11
40 16 2 6 1 8
29 13 0 5 1 5
5 11 2 1 6 18
24 12 3 - 1 i
33 17 4 3 6 42
23 12 3 2 6 30
22 8 1 3 6 24
19 7 1 1 6 12
. 13 2 2 11 i
67 41 2 16 29 522
70 41 2 16 29 522
28 13 2 3 14 70
18 7 1 1 6 12

* The source of the programs in the Appendix A

100

600 -
500 i_
400]
300
o
200 / Sf
100 ;
0 .
1234567 891011121314151617181920212223242526272829
Program

Figure 5.1: Plot of Spand S of 30 sample programs.

As indicated in Figure 5.2, the physical size (S¢) cannot measure or predict the software
complexity. The cognitive complexity of software is not proportional to its physical size.
For example, there are three cases with similar physical size around 13 LOC, but one has
cognitive functional size 5 CWU, the second one has cognitive functional size 44 CWU
while that of the third is 70 CWU.

Sfvs. Sp

600
500 =
0 /
» 300 [
0 [
100 /
0 _—MA_Q.JL

36677 778891010111212121213131314161718192026344141
Sp

Figure 5.2: Plot physical size against functional size.

101

5.5 Conclusion

Software complexity measures serve both as an analyzer and a predictor in quantitative
software engineering. The cognitive functional size (CFS) is used on the basis of cognitive
weights, permitting determination of software complexity from both architectural and
cognitive aspects. Cognitive weights for basic control structures (BCSs) have been
introduced to measure the complexity of logical structures of sofiware. A set of examples
has been carried out to analyze the relationship between physical size and cognitive
functional size of software. The cognitive functional size has been shown to be a
fundamental measure of software artifacts based on the cognitive weight. This work has
produced three substantial findings:
a} The CFS of software in design and comprehension is dependent on three factors:
internal processing structures, as well as the number of inputs and outputs.
b) The cognitive complexity measure (CFS) is more robust than the physical-size
measure and independent of language/implementation.
¢) CFS provides a foundation for cross-platform analysis of compiexity and size of
both software specifications and implementations for either design or

comprehension purposes in software engineering.

http://www.tcpdf.org

‘e o* inghiialljl

4 DARALMANDUMAH

Apa M hay L all o cigp 82 alg. T

Measuring software complexity for software engineering quality
assurance

Wohaishi, Ahmad Muhammad Ali

Fahmy, Maged A.. Al Sultanny, Yas A.(Co-Advisor. Advisor)
2009

aolioll

1-155

736039

aueol> blw,

English

uiow>o dlw,

w2l aulzdl asol>

Wl wlwl)al ads

o=l

Dissertations

Ologleall LiglgiSi «oleo | dwrid cogwldl gl
https://search.mandumah.com/Record/736039

Ulgusll

HEWIN| V-1V

ton>l padlio
HEINVIVN P TR |
:&990
1olxaall

:MD 48,

i Sgizeall £9i
raelll

réodell)l
Aol

ra sl

gl

10loglendl aclgd

:&;_..'o|99
ol

‘ ‘ abgaxo dgazl gaox .nghaioll ,ls 2019 ©
aclb of Juoss cliSoy .abgano sl Bsi> gaor Ol lale il Bgi> ool go gdgall BVl sle sl aslio bslall oid
s (esug,SIVI 2yl of iVl gdlgo Jio) alsws STy inidl ol Jugmeil of gas)] gioug onsd sasaia)] plaziwl sslodl 0is

Langhiall ls ol il Bei> Lol o s gy pa

ol LAl Zyl_i.lbl

www.manat

https://search.mandumah.com/Record/736039

155
Auaall

o Ll Ay TVl Al pall I S due b i sl ClaTiay Siblas 6 gl) Gl s

Uil Al ol sia A ey il 38 ey il€a 45 sk (o gt poll el Clliaan (3 0) L8 i Al Sl 02
Lllalt ppliall (any o o puoll ooy Uil y gl ity Uiy L80Y1 (e Al e Al il 3 plalt o3a kel
o Ll A jlan g el (3 sdald el 5 iy jlalll g s 5 e M KU 5 Culailh 5 g 138 oy AialSh

oS S 2l 3 g ANl el Gge 53 B0 50l

J&_}EJ‘GAU&*\]‘JGA&JJ.\&M\JL,M 'lC..\.LAAJ\H_!S:LJ‘:._}.!.‘!EJ_}A.HCJL&JJQL.AI:E“J%LJAEJJ;“OM
it st 58 5yl s Ak g el oll S BB e 5 e Lails A8 el

il &l Al Uiaby el) e 553 3)yl et i agaliball Al g g 23 iealall Al b
Ul C++ Jle ciladsae dsasally Anliy Aali e Bl b iy A0, sl Sl S 3 2l
Ll ()8 aiaill A Liad gatl U8y uitatlly (Blady Lagh Uy gl 3 gald S M) LE0E L) 50 by sl
ol Al o 3055 eyl il i) il e 2235 i

§ 15 han A (e clglaadt 2050 o 500 8 e VL 38T aa aiadll ad U la U e ol M AiLaYY
JSLE s A8 a3 Uy palall 23 gt Aa g el o3 JNA (e Ll iy a gl (Jle Siadlaali 3
Bagn o el (S O Jat e leflel ey ebiat i S ol jalt gl 5o) (Sasll e 1 330 sall

Aol Al

http://www.tcpdf.org

‘e o* inghiialljl

4 DARALMANDUMAH

Apa M hay L all o cigp 82 alg. T

Measuring software complexity for software engineering quality
assurance

Wohaishi, Ahmad Muhammad Ali

Fahmy, Maged A.. Al Sultanny, Yas A.(Co-Advisor. Advisor)
2009

aolioll

1-155

736039

aueol> blw,

English

uiow>o dlw,

w2l aulzdl asol>

Wl wlwl)al ads

o=l

Dissertations

Ologleall LiglgiSi «oleo | dwrid cogwldl gl
https://search.mandumah.com/Record/736039

Ulgusll

HEWIN| V-1V

ton>l padlio
HEINVIVN P TR |
:&990
1olxaall

:MD 48,

i Sgizeall £9i
raelll

réodell)l
Aol

ra sl

gl

10loglendl aclgd

:&;_..'o|99
ol

‘ ‘ abgaxo dgazl gaox .nghaioll ,ls 2019 ©
aclb of Juoss cliSoy .abgano sl Bsi> gaor Ol lale il Bgi> ool go gdgall BVl sle sl aslio bslall oid
s (esug,SIVI 2yl of iVl gdlgo Jio) alsws STy inidl ol Jugmeil of gas)] gioug onsd sasaia)] plaziwl sslodl 0is

Langhiall ls ol il Bei> Lol o s gy pa

ol LAl Zyl_i.lbl

www.manat

https://search.mandumah.com/Record/736039

Index
A DEITACT .. o e s i
Acknowledgements ... 1
DEiCaEION .ot e it
175 1= SO D ST v
List of Symbols and abbreviations ... vii
LISt OF FIGULIES <.ttt e et e e e e ix
LASt OF TaDIES © .ottt Xi
Chapter I Introduction and OVerview ... 1
1.1 Software Engineering ...]
1.2 Software Quality ASSUFANCEooiii e 5
1.3 Software Quality Control ..o 7
I.4 Fundamental of Software Testing ... 12
1.5 Standardso i4
1.6 Problem Statementooooiiii e 16
1.7 Research Significanceooiiiiiiii 16
1.8 Research Objectiveooiiiiii 17
1.9 Research Methodology ... 17
1.10 Research Variables ... 18
1.E1 Thesis outhne ... oo 18
Chapter 2 Literature Survey on Software Complexity ... 20
2.1 Structure measures of software complexity 20
2.2 Line of Code Method i 23
23 dnformation Flow ... 25
2.4 McCabe Methodo 28
2.5 Halstead’s Method ... 30
2.6 Cognitive Weights Method ... 32
Chapter 3 Implementation of Measuring Object-Oriented Programming Complexity 35
31 Introduction ... 35
3.2 Most Common Used Programming Languages and History36

32,1 CandCHLANGUAGE ..ot e 37

3.2.2 Visual Basic, Early Versions ... 37

323 HTML Languageocooovvvvniiiiniiniiiiiiicnae e 38

324 JavaScript ..o 38

3.2.5 VBSCript oo P 38

3.2.6 Object-Oriented Programming ... 39

3.2.7 Comparison Between C# and Java Keywords 43

3.3 Examples of Measuring Complexity for Software Program 44

3.3.1 Case Study [(Linear Search Complexity)c.o0 44

3.3.2 Case Study Il (Binary Search Complexity) 57

3.4 ConClusion ... 71
Chapter 4 Modification of Halstead Mathematical Equation Complexity 72
4.1 Combinational Logic Design ... 73

4.1.1 Binary Adderscoo 73

4.1.2 FullAdder 74

4.2 Effect of Microprocessors on Halstead method 76

4.3 ConCluSION ..o 92
Chapter 5 Software Complexity Based on Cognitive Weights 93
5.1 IntroduCtion ... 93

5.2 The Cognitive Weight of Software ... 96

53 Formal Description of Software Cognitive Complexity97

5.4 Robustness of the Cognitive Complexity Measure o8

5.5 ConCIUSION ..ot 101
Chapter 6 Software Production Complexity Model ... 102
6.1 INtrodUCtiono 102

6.2 Problem with Software Complexity Model 104

6.2.1 SOMULION ... e 104

6.2.2 Developmentooo 105

6.3 Constrains on Software Complexity Model ... 105

6.4 Software Quality 106

vi

6.4.1 TEeSHNE ..ot 107

6.4.2 Reliability ... 110

6.4.3 Modifyorchange 110

6.5 Software Productivity ..o 11

6.5.1 Maintainability 111

6.5.2 SImplicityoooi 111

6.5.3 Compatibilityooo 112

6.6 CONCIUSION ...\ 112
Chapter 7 Conclusion and Future Works ... 114
7.1 Conclusionoooiiii 114

7.2 Future WOrkso 115

R ENCES .. e L6

APPENAIX .. 121

http://www.tcpdf.org

o o iingliiall jla
. DAR ALMANDUMAH

Apa M hay L all o cigp 82 alg. T

Measuring software complexity for software engineering quality
assurance

Wohaishi, Ahmad Muhammad Ali

Fahmy, Maged A.. Al Sultanny, Yas A.(Co-Advisor. Advisor)
2009

aolioll

1-155

736039

ausol> Jilw,

English

uiow>o dlw,

w2l aulzdl asol>

Lol wlwl)al ads

o=l

Dissertations

Ologleall LigleiSi «oleo | dwrid cogwldl gl
https://search.mandumah.com/Record/736039

Ulgusll

HEWIN| V-1V

ton>T paelio
1S3l 2ol
:&990

olxaall

:MD 48,

1 Sgixol| g9

réodell)l
Aol

ra sl

gl

10loglendl aclgd

ol

abge=o Jga=ll guo> .anglaioll Hl> 2019 ©
acld 9| Joozw cliSoy .abga=o il 98> gio> u| lode),u,uJ| Igs> ulz.o| &0 8990l Bl (sle sy a>lio ds5ladl 01
8 (csiaiSIVI 2yl of iVl g8lgo Jio) dlerg o1 puc sl of Jugzill ol ol ginws daid (sasaidl olasiwl bslall oid

Q.ogh.m“)|> 5|).....\.J| Ygb> ulz.o| U0 ;sx]a> feX3¥-Y]

www.manar

https://search.mandumah.com/Record/736039

ARABIAN GULF UNIVERSITY

College of Graduate Studies F , : Technology Management
Programme

Measuring Software Complexity for
Software Engineering Quality Assurance

A Thesis Submitted in Partial Fulfillment of the Requirements for the Master’s
Degree in Technology Management
(Specializing in Engineering)

Submitted by

Ahmed Mohammed Ali Wohaishi
Bachelor of Electrical Engineering, King Fahad University of Petroleum and
Minerals, Kingdom of Saudi Arabia, 1999

Supervised by

Dr. Yas A. Al-Sultanny Dr. Maged M. Fahmy
Associate Professor of Technology Management Assistant Professor of Computers
Arabian Gulf University King Faisal University
Kingdom of Saudi Arabia

KINGDOM OF BAHRAIN
January 2009 (A.D.) Muharram 1430 (A.H.)

¥ -
¥ LI R e

Arabien Culf University

»f_""

ASadl ¢ AdBUal dial g luaei

Y

¥y

=

i'_._é_)Li {__)A::.M

< “ 1 1 v -
‘_}4/‘;;.” Axas - “s ;ﬂi:;.jz'w Al al

-~ L

i).\ . - Y L_,F"i": ™
j £ shall aal) Bdls

e S
B ® A W VA

: 1

)”“‘H Tl ! d\.LALA — ‘L‘-—‘-S-‘-N S)1-35 E IR

= CoR N

NP s

Y.<y
§ X e - i, . .
/1 d_):_a.ﬂE ::_JL\W el Lﬂi}‘l_d;.c_\ Al

R

: i
et).x.ﬂ el Axels

dSJLdeJ.«L;
ﬁ&d}mmqu.d

! Tl §

f
. - i 1 H -
‘»_"s a-:htl ‘:‘C ‘._b'

. L e .
et Elail da Ll

A ol :’ﬂ:‘.; /uj:‘ 481 i

SEF] e WS g AR Bind

LR B b it Do . e - -
A8l 8l B phalad n';Ju.Ulﬁdy‘.-_L“-ﬂ‘.;yNu.l; La3ia dwal Alaiol s dadkali ds

4/4

BN 2 67 Ki-\f;ji)[‘ﬁi\ﬂ OfF [‘1“_!.“?1 f-',“\,', TEL - i ~uey ;‘.V -
. Tho o rent 4 VTR
[YE)

Acknowledgements

It is a great honor for me to have studied at the College of Postgraduate Studies at the
Arabian Guif University, where innovation and constant improvement are the order of the
day. There are a number of people without whom this thesis might not have been written,

and to whom | am greatly indebted.

[am deeply indebted to Dr. Yas Al-Sultanny and Dr. Maged Fahme for having been so
supportive and for having given me all their help in the making of this thesis. 1 also express
my gratitude for all my friends without whom this thesis might not have been successfully

completed.

1ii

Dedication

This thesis is dedicated to my wonderful parents, my mother Alya’a and my father
Mohammed, who have raised me to be the person I am today. They have been with me
every step of the way, through good times and bad. Thank you for all the unconditional
love, guidance, and support that you have always given me, helping me to succeed and

instilling in me the confidence that | am capable of doing anything | put my mind to.

Thank you for everything. | love you!

Index
A DEITACT .. o e s i
Acknowledgements ... 1
DEiCaEION .ot e it
175 1= SO D ST v
List of Symbols and abbreviations ... vii
LISt OF FIGULIES <.ttt e et e e e e ix
LASt OF TaDIES © .ottt Xi
Chapter I Introduction and OVerview ... 1
1.1 Software Engineering ...]
1.2 Software Quality ASSUFANCEooiii e 5
1.3 Software Quality Control ..o 7
I.4 Fundamental of Software Testing ... 12
1.5 Standardso i4
1.6 Problem Statementooooiiii e 16
1.7 Research Significanceooiiiiiiii 16
1.8 Research Objectiveooiiiiii 17
1.9 Research Methodology ... 17
1.10 Research Variables ... 18
1.E1 Thesis outhne ... oo 18
Chapter 2 Literature Survey on Software Complexity ... 20
2.1 Structure measures of software complexity 20
2.2 Line of Code Method i 23
23 dnformation Flow ... 25
2.4 McCabe Methodo 28
2.5 Halstead’s Method ... 30
2.6 Cognitive Weights Method ... 32
Chapter 3 Implementation of Measuring Object-Oriented Programming Complexity 35
31 Introduction ... 35
3.2 Most Common Used Programming Languages and History36

32,1 CandCHLANGUAGE ..ot e 37

3.2.2 Visual Basic, Early Versions ... 37

323 HTML Languageocooovvvvniiiiniiniiiiiiicnae e 38

324 JavaScript ..o 38

3.2.5 VBSCript oo P 38

3.2.6 Object-Oriented Programming ... 39

3.2.7 Comparison Between C# and Java Keywords 43

3.3 Examples of Measuring Complexity for Software Program 44

3.3.1 Case Study [(Linear Search Complexity)c.o0 44

3.3.2 Case Study Il (Binary Search Complexity) 57

3.4 ConClusion ... 71
Chapter 4 Modification of Halstead Mathematical Equation Complexity 72
4.1 Combinational Logic Design ... 73

4.1.1 Binary Adderscoo 73

4.1.2 FullAdder 74

4.2 Effect of Microprocessors on Halstead method 76

4.3 ConCluSION ..o 92
Chapter 5 Software Complexity Based on Cognitive Weights 93
5.1 IntroduCtion ... 93

5.2 The Cognitive Weight of Software ... 96

53 Formal Description of Software Cognitive Complexity97

5.4 Robustness of the Cognitive Complexity Measure o8

5.5 ConCIUSION ..ot 101
Chapter 6 Software Production Complexity Model ... 102
6.1 INtrodUCtiono 102

6.2 Problem with Software Complexity Model 104

6.2.1 SOMULION ... e 104

6.2.2 Developmentooo 105

6.3 Constrains on Software Complexity Model ... 105

6.4 Software Quality 106

vi

6.4.1 TEeSHNE ..ot 107

6.4.2 Reliability ... 110

6.4.3 Modifyorchange 110

6.5 Software Productivity ..o 11

6.5.1 Maintainability 111

6.5.2 SImplicityoooi 111

6.5.3 Compatibilityooo 112

6.6 CONCIUSION ...\ 112
Chapter 7 Conclusion and Future Works ... 114
7.1 Conclusionoooiiii 114

7.2 Future WOrkso 115

R ENCES .. e L6

APPENAIX .. 121

H2

BCPL
BCS
BPEL
BPMs

CASE
CFS
CLOC
CMM
CMT++
CwWu

Vil

List of Symbols and Abbreviations

Number of unique operators

Number of unique operands
Vocabulary of program

Basic combined programming language
Basic control structures

Business process execution language
Business process models

Structure complexity

Computer-Aided Software Engineering
Cognitive functional size

Commented source line of code
Capability maturity model

Code metric tool for C and C++
Cognitive weight unit of software
Difficulty of program

Number of edges

Effort of program

Coding efficiency

Executable statements

File Transfer Protocol

Graphical user interfaces

Hyper Text Markup Language
Hypertext transfer protocol

Institute of Electrical &Electronics Engineers
Inputs / outputs

International Standard Organization
Internet service provider

Lines of code

Line of code with comments

viii

Number of nodes
Length of program

Total occurrences of operators

Total occurrences of operands

%)

* Total occurrences of operators for add

Total occurrences of operators for multiplication
Total occurrences of operators for division
Length add of program

Length multiplication of program

7z Zz z Zz 2z Z Z 7 Z 3

Length division of program

NCLOC Noncommented source line of code
NTDS Navel tactical data system

N/A Not applicable

MC McCabe cyclomatic complexity
MHz Mega Hertz

oopP Object-oriented programming

p Number of connected components
QA Quality assurance

RTPA Real time process algebra

Sr Functional size

Sp Physical size

SPI Software process improvement
SQA Software quality assurance

SQE Software quality engineering

SVV Software verification and validation
A The volume of program

UML Unified modeling language

URL Uniform resource locator

W& W, Cognitive weights

Figure 1.1
Figure 1.2
Figure 1.3
Figure 1.4
Figure 1.5
Figure 1.6
Figure 2.1
Figure 2.2
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8
Figure 3.9

Figure 3.10
Figure 3.11
Figure 3.12
Figure 3.13
Figure 3.14
Figure 3.15
Figure 3.16

Figure 3.17
Figure 3.18

List of Figures

Contemporary VIEWo
A short history of software ...
The phases of the software life cycle/software process
Process based quality ..o
Quality CONtrOl ProCess ..ot
ISO 9000 and quality management ...
A program and its associated flow graph ...
Example for McCabe’s cyclomatic number ...
The relationship between Class, Superclass and Subclass
A pseudo code definition ofaclass ... R
Main program- linear search flow chart written in C++ languages
Main program- linear search flow graph written in C+ languages
Main program- linear search flow chart written in VB languages.............
Main program- linear search flow graph written in VB languages
Main program- linear search flow chart written in Java languages
Main program- linear search flow graph written in Java languages ...
Comparison the complexity between the object oriented languages C++,
Visual Basic, and Java for linear search algorithm
Main program- binary search flow chart written in C++ languages..........
Main program- binary search flow graph written in C++ languages
Main program- binary search flow chart written in VB languages
Main program- binary search flow graph written in VB languages
Main program- binary search flow chart written in Java languages
Main program- binary search flow graph written in Java languages
Comparison the complexity between the object oriented languages C++.
Visual Basic, and Java for binary search algorithm
Comparison of McCabe vs. Halstead for linear search of anarray

Comparison of McCabe vs. Halstead for binary search of an array

69
70

71

Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4

Figure 4.5

Figure 4.6

Figure 4.7

Figure 5.1

Figure 5.2
Figure 6.1

Binary addition ... TR 74
Truth table and logical maps of the fulladder 75
Full adder implemented with halfadders 76

Compare between the total number of operators and effort according to
Halstead method ... 80
Compare between the total number of operators and efforts according to
modified method to 80286 microprocessor.........oooovvvee e 84
Compare between the total number of operators and efforts according to
modified method to 80486 microprocessor.c..o.oooein i 88

Compare between the total number of operators and efforts according to

modified to Pentium microprocessor... ... 92
Plot of Syand S, of 20 sample programs 100
Plot physical size against functional size 100

A model of software complexity ... 103

Table 2.1
Table 3.1
Table 3.2
Table 3.3
Table 3.4
Table 3.5
Table 3.6
Table 3.7
Table 3.8
Table 3.9

Table 3.10

Table 4.1

Table 4.2

Table 4.3

Table 4.4

Table 4.5

Table 4.6

Table 4.7

Table 4.8

Table 4.9

Table 4.10

X1

List of Tables

Basic control structures and its cognitive weights
Javaand CH keywords ...

Brief comparison between C# and Java languages keywords.........

The complexity of the main program linear search written by C++ ...

The complexity of the main program linear search written by VB...
The complexity of the main program linear search written by Java .
The complexity of the main program binary search written by C++
The complexity of the main program binary search written by VB..
The complexity of the main program binary search written by Java
Comparison of McCabe vs. Halstead methods for linear search

OF AN AITAY. ...
Comparison of McCabe vs. Halstead methods for Binary search

of anarray ...
Operands by CMT++ ...
Operators by CMT++ ..., e
Examples of programs complexity by Halstead method
Execution times for several generations of computers

Examples according to modified method taken in consideration the

execution time for add function to 80286 microprocessor

Examples according to modified method taken in consideration the
execution time for multiplication function to 80286 microprocessor

Examples according to modified method taken in consideration the

execution time for division function to 80286 microprocessor

Examples according to medified method taken in consideration the

execution time for add function to 80486 microprocessor

Examples according to modified method taken in consideration the
execution time for multiplication function to 80486 microprocessor

Examples according to modified method taken in consideration the

execution time for division function to 80486 microprocessor

........ 82

83

85

87

x1i

Table 4.11 Examples according to modified method taken in consideration the
execution time for add function to Pentium microprocessor 89
Table 4.12 Examples according to modified method taken in consideration the
execution time for multiplication function to Pentium microprocessor 90
Table 4.13 ~ Examples according to modified method taken in consideration the
execution time for division function to Pentium microprocessor 91
Table 5.1 Definition of BCSs and their equivalent cognitive weights 93
Table 5.2 Analysis of the physical and functional sizes 99

Chapter 1

Introduction and Overview

As software systems importance has grown, the software community has continually
attempted to develop technologies that will make it easier, and less expensive to build and
maintain high-quality computer programs. Some of these technologies are targeted at a
specific application domain (e.g., web-site design and implementation), other focus on a
technology domain e.g. objected-oriented systems or aspect-oriented programming (Deitel
H. et. al. 2009). This chapter presents an overview of the thesis, it describes the problem

statement and continues with the thesis contribution. Then, it presents thesis outline.

1.1 Software Engineering

Several software systems have been developed over the past few years. However. the
absence of a standard regulatory mechanism in terms of quality control/quality assurance
with respect to implementation and managing projects, particularly in the industrial sector
has lead to an inconsistency among the various software systems. The complexity of each
project and uniqueness make the task even more difficult. With an eye on new
methodologies and tools relevant to the entire life cycle, from conceptualization to
implementation, the quality assurance of software has to be visualized. Development of
software for managing projects is an extremely complex affair. Usually. the evolution of
the software is the result of team work or rather several groups of specialists, who
individually are experts in their respective disciplines, but probably may now have enough
expertise in other disciplines. The work is quite tasking and time consuming. Whatever be
the technique for final testing of the sofiware, however organized be the methodology.
however systematic be the documentation involved as well as control of the final
configuration, it would be a fruitless exercise if proper management of quality assurance Is
not in place (Pressman R. 2003).

Software can also be seen as an interface between the problem domain and the computer as
shown in Figure 1.1. Software Engineering, as defined in IEEE Standard 610.12. 1s: “The
application of a systematic, disciplined, quantifiable approach to the development,

operation, and maintenance of software: that is, the application of engineering to software™.

Virtually all countries now depend on complex computer-based systems (Somerville 1.
2006). More and more products incorporate computers and controlling software in some
form. The software in these systems represents a large and increasing proportion of the total
system costs. Therefore, producing software in a cost-effective way is essential for the
functioning of national and international economies software engineering is an engineering
discipline whose goal is the cost effective development of software systems. In some ways,
this simplifies software engineering as there are no physical limitations on the potential of
software. In other ways, however, this lack of natural constraints means that software can
easily become extremely complex and hence very difficult to understand (Nasib S. 2005).

Figure 1.1: Contemporary View

Figure 1.2 shows short history of software. During the early years of the computer era,
general-purpose hardware became commonplace. Product software (ie., programs
developed to be sold to one or more customers) was in its infancy. The second era of
computer system spanned the decade from the mid-1960s to the late 1970s.
Multiprogramming and multi-user systems introduced new concepts of human-machine
interaction. Real-time systems could collect, analyze, and transform data from multiple
sources. The second era was also characterized by the use of product software and the
advent of "software houses." The third era of computer system evolution began in mid-
1970s and spanned more than a full decade. The distributed system greatly increased the
complexity of computer-based systems. The conclusion of third era was characterized by

the advent and widespread use of microprocessors. In less than a decade, computers
became readily accessible to the public at large. The fourth era of computer system
evolution moves us away from individual computers and computer programs and toward
the collective impact of computers and software. Powerful desk-top machines controlled by
sophisticated operating systems, networked locally and globally, and coupled with
advanced software applications have become the norm. The Internet exploded and changed
the way of life and business (Pressman R. 2005).

e Powerful desktop
systems

e Object-oriented
technologies

I
1
]
]
1
I
]
]
1
, ® Artificial neural
i
1
]
]
1
1
]

Expert systems
networks
Parallel computing
Network computers
The fourth era
, e R e w1 b N e I
| * Distributed systems :
L Embedded “intelligence” :
1 o Low cost hardware]
| » Consumer impact :
: The third era :
U R n IR AR e s 1
: e Multi-user :
1 » Real-time]
| » Database :
| © Product software |
: The second era :
o T e 5
, * Batch orientation :
L Limited distribution :
1 o Custom software 1
: Early years :
1950 1960 1970 1980 1990 2008

Figure 1.2: A short history of software

The series of steps that software undergoes, from concept exploration through final

retirement, is termed its life cycle as shown in Figure 1.3. During this time, the product

goes through a series of phases: requirements, specification (analysis), planning, design,
implementation, integration, maintenance (which is the highest cost among all these
phases), and retirement (Schach S. 1997).

¥ Requirement 2%

® Specification 5%

® Design 6%

¥ Module Coding 5%
¥ Module Testing 7%

 Integration 8%

“' Maintenance 67%

Figure 1.3: The phases of the software life cycle/software process

1. Requirements phase: The concept is explored and refined, and the client’s
requirements are elicited.

2. Specifications (analysis) phase: The client’s requirements are analyzed and
presented in the form of the specification document (“what the product is supposed
to do”). Sometimes it is called the specification phase since a plan is drawn up for
the software project management and the proposed development is described in
detail.

3. Design phase: The specifications undergo two consecutive processes of
architectural design (the product as a whole is broken down into modules) and
detailed design (each module is designed).

4. Implementation phase: The various components undergo coding and testing.

5. Integration phase: The components are combined and tested as a whole
(integration) when the developers are satisfied that the product functions correctly,

it is tested by the client (acceptance testing) implementation phase ends when the
product is accepted by the client and installed on the client’s computer.

6. Maintenance phase: All changes to the product once the product has been delivered
and installed on the client’s computer. It includes corrective maintenance (software
repair) which consists of the removal of residual faults while leaving the
specifications unchanged and enhancements (software updates) which consists of
changes to the specifications and the implementation of those changes. The two
types of enhancements are perfective (changes the client thinks will improve the
effectiveness of the product, such as additional functionality or decreased response
time) and adaptive (changes made in response to changes in the environment, such
as new hardware/operating system or new government regulations).

7. Retirement phase: The product is removed from service. Provided functionality is

no longer of use to the client.

1.2 Software Quality Assurance
The quality of software has improved significantly over the last few years and the reason
for this is that companies have new techniques and technology such as the use of object-
oriented development and associated Computer-Aided Software Engineering (CASE)
support. In addition, however, there has a greater awareness of the importance of software
quality management and the adoption of quality management technigues from
manufacturing in the software industry. However, software quality is a complex concept
that is not directly comparable with quality in manufacturing. In manufacturing. the notion
of quality means that the developed product should meet its specification. In an ideal world
this definition should be applied to all products but for software system the problems with
this is as the following (Moores B 1994):
» A specification should be oriented toward the characteristics of the product that the
customer wants. However, the development organization may also have equipments
{(such as maintainability requirements) that are not included in the specification.
» Unknown how to specify certain quality characteristics (e.g., maintain ability) in an

unambiguous way.

Quality assurance (QA) is the process to define how the software quality can be achieved
and how the development organization knows that the software has the required level of
quality. The QA process is primarily concerned with defining or selecting standards that
should be applied to the software development process or software product. As the part of
QA process tools and methods to support these standards are selected and procured. The
two types of standards that may be established as part of the quality assurance process are
(Sommerville 1. 2006):

1. Product standards: these standards are applied to the sofiware product being
developed. These include document standards, such as the structure of requirements
documents; documentation standards.

2 Process standards: these standards define the process that should be followed during
software development. It include definitions of specification design and validation
process and a description of the documents that should be written in the path of
these processes.

SQA must plan what checks to do early in the project. The most important selection
criterion for software quality assurance planning is risk. Common risk areas in software
development are novelty, complexity, staff capability, staff experience, manual procedures
and organizational maturity. SQA staff should concentrate on those items that have a strong
influence on product quality. They should check as early as possible the following (Jones
M. et. al. 1997):

» Project is properly organized, with an appropriate life cycle:

» development team members have defined tasks and responsibilities;
¢ documentation plans are implemented;

» documentation contains what it should contain:

» documentation and coding standards are followed;

e standards, practices and conventions are adhered to;

e metric data is collected and used to improve products and processes;
e reviews and audits take place and are properly conducted;

s tests are specified and rigorously carried out:

e problems are recorded and tracked,;

e projects use appropriate tools, techniques and methods;

e software is stored in controlled libraries;

¢ software is stored safely and securely;

¢ software from external suppliers meets applicable standards;

e proper records are kept of all activities;

o staff are properly trained;

o risks to the project are minimized.
Project management is responsible for the organization of SQA activities, the definition of
SQA roles and the allocation of staff to those roles (Jones M. et. al. 1997).

1.3 Software Quality Control

Good quality managers aim to develop a ‘quality culture’ where everyone responsible for
product developments is committed to achieving a high level of product quality as shown in
Figure 1.4. They encourage teams to take responsibility for the quality for their work and to
develop new approaches to quality improvement, while standards and procedures are the
basis of quality management, experienced quality managers recognize that there are
intangible aspects to software quality (elegance, readability, etc.) that cannot be embodied
in standards. They support people who are interested in these intangible aspects of quality
and encourage professional behavior in all team members (Daniel G. 2003).

Figure 1.4: Process based quality

Variation control may be equated to quality control as shown in Figure 1.5. But how do we
achieve quality control?. Quality control involves the series of inspection, reviews, and
tests used throughout the software process to ensure each work product meets the
requirements placed upon it. Quality control includes a feedback loop to the process that
created the work product. The combination of measurement and feedback allows us to tune
the process when the work products created fail to meet their specifications. A key concept
of quality control is that all work products have defined, measurable specifications to which
we may compare the output of each process. The feedback loop is essential to minimize the

defects product (Vigder M. et. al. 1994).

Software development

Frocess (i) D2 D3 D4 D5 D6
o . > o —
Quality management
Process & \ v v v
Standards and Quality plan Quality review reports

Procedures

Figure 1.5: Quality control process

Testing presents an interesting anomaly for the software engineers, who by their nature are
constructive people. Testing requires that the developer discard preconceived notions of the
“correctness” of software just developed and then work hard to design test cases to “break”
the software. Software testability is simply how easily can be tested. The following
characteristics lead to testable software (Gray M. 1999):

Operability: “The better it works, the more efficiently it can be tested.” If a system is
designed and implemented with quality in mind, relatively few bugs will block the

execution of tests, allowing testing to progress without fits and starts.

Observability: **What you see is what you test.” Inputs provided as part of testing produce
distinct outputs. System states and variable are visible during execution. Incorrect output is
easily identified. Internal errors are automatically detected and reported. Source code is

accessible.

Controllability: “The better we can control the software. The more the testing can be
automated and optimized.” software and hardware states and variables can be controlled
directly by the test engineer. Tests can be conveniently specified automated, and

reproduced.

Decomposability: “By controlling the scope of testing, we can more quickly isolate
problems and perform smarter retesting.” the software is built from independent modules

that can be tested independently.

Simplicity: “The less there is to test, the more quickly we can test it.” The program should
exhibit functional simplicity (e.g., the feature set is the minimum necessary to meet
requirements), structural simplicity (e.g., architecture is modularized to limit the
propagation of faults), and code simplicity (e.g.. a coding standard is adopted for ease of

inspection and maintenance).

Stability: “The fewer the changes, the fewer the disruption to testing.” changes to the
software are infrequent, controlled when they do occur, and do not invalidate existing tests.

The software recovers well from failure.

Understandability: “The more information we have, the smarter we will test.” The
architectural design and the dependencies between internal, external and shared
components are well understood. Technical documentation is instantly accessible. well
organized specific and detailed, and accurate. Changes to the design are communicated to

testers.

10

Most systems eventually reach a point when questions arise about their maintainability and
supportability. Some systems are supportable for years, while others have supportability
problems from initial deployment. Many of these problems are indicative of insufficient
resources being applied to system support. The key to having cost-effective systems is to
have applied the correct quality controls during initial development and implemented good
recovery strategies to existing systems. Quality controls used during maintenance may need
to be different than those used when the software was created. There are a number of
important issues when considering improving the quality of existing software systems.
Some are (Brenda C. et. al. 2002):
¢ Most likely the system is being managed in a different environment than it was
developed.
o Customers or users should be involved and their expectations need to be carefully
considered, particularly in terms of failures or errors and availability.
s The people involved in support of the system may not be the same ones that
developed it.
» How the system was developed or constructed may not necessarily be obvious to
current maintainers.
¢ Documentation and a change management process may not be adequate.
¢ Planning for adequate resources and identification of their sources needs to be done.
e Integration into information architectures or modernization plans needs to be
considered.
There are good reasons to consider improving the quality of existing systems. If a system is
becoming difficult to support, it may well hinder an organization’s ability to achieve
business success. Support costs can be up to 80% of the system’s overall life cycle cost:

quality improvements can provide a clear return on investment (Chatzigeorgiou A. et. al.
2003).

To provide a methodology for designing, applying, and validating sofiware quality
guidelines, we recommend and briefly summarize IEEE standard 1061 (IEEE Std 106]
1998). This standard gives a process for constructing and implementing a software quality

metrics framework that can be tailor-made to meet quality requirements for a particular

11

project and/or organization. Since the introduction of source code metrics into the
discipline of software engineering, controversy has surrounded attempts to validate their
usefulness as indicators and discriminators of quality. Traditional metrics such as
McCabe’s cyclomatic complexity, Halstead’s software science metrics, and source lines-ot-
code, while persisting as commonly used metrics for indicating quality, unfortunately still
lack conclusive evidence to support this practice. The reasons why traditional code metrics
have been inadequate as measures of quality and complexity include the

following(Crutchfield et. al. 1994):

e They are narrow in the scope of software characteristics they measure, and they are
defined to be language independent.

» Their conception was strongly influenced by the relative simplicity of programming
languages.

e They are based primarily on lexical and syntactic features of code, rather than on
the semantic and structural relationships that exist among program units and smaller
elements within units.

e They focus on executable statements and generally neglect the influence on
complexity of data definitions and the interaction between data and computation
flow.

¢ They have often been designed without regard to the programmers task, problem
domain, or environment and ignore the stylistic characteristics of a program.

All testing activities should include processes to uncover defects during the complete life
cycle of the software. The focus on full life cycle testing (as opposed to system integration
testing only) is important because the cost of defects rises exponentially the later the phase
of the cycle. The testing activities include. but are not limited to (Bussieck M. et. al. 2004):
Unit testing: Testing of the individual component using both black-box (input-output only)
and white-box (known internal code structure) type tests.

Regression testing: Testing to determine if changes to the software or fixing a defect cause

any problems to other components in the system.

http://www.tcpdf.org

‘e o* inghiialljl

4 DARALMANDUMAH

Apa M hay L all o cigp 82 alg. T

Measuring software complexity for software engineering quality
assurance

Wohaishi, Ahmad Muhammad Ali

Fahmy, Maged A.. Al Sultanny, Yas A.(Co-Advisor. Advisor)
2009

aolioll

1-155

736039

aueol> blw,

English

uiow>o dlw,

w2l aulzdl asol>

Wl wlwl)al ads

o=l

Dissertations

Ologleall LiglgiSi «oleo | dwrid cogwldl gl
https://search.mandumah.com/Record/736039

Ulgusll

HEWIN| V-1V

ton>l padlio
HEINVIVN P TR |
:&990
1olxaall

:MD 48,

i Sgizeall £9i
raelll

réodell)l
Aol

ra sl

gl

10loglendl aclgd

:&;_..'o|99
ol

‘ ‘ abgaxo dgazl gaox .nghaioll ,ls 2019 ©
aclb of Juoss cliSoy .abgano sl Bsi> gaor Ol lale il Bgi> ool go gdgall BVl sle sl aslio bslall oid
s (esug,SIVI 2yl of iVl gdlgo Jio) alsws STy inidl ol Jugmeil of gas)] gioug onsd sasaia)] plaziwl sslodl 0is

Langhiall ls ol il Bei> Lol o s gy pa

ol LAl Zyl_i.lbl

www.manat

https://search.mandumah.com/Record/736039

Chapter 7

Conclusion and Future Works

7.1 Conclusion

Software complexity measurement methods such as McCabe, Halstead. and cognitive
methods are discussed in this thesis. Linear and binary search algorithms are used as a case
studies to test the complexity of different object oriented language such as C++, Visual
Basic, and Java. Linear and binary search program complexities are measured using
methods: LOC without comments, LOC + comments, McCabe complexity. the program
difficulty as per Halstead complexity method, and file size are studied and compared
regarding three mentioned programming languages. Moreover, modification to Halstead
complexity measure is suggested based on the fact that operator execution time for
addition, multiplication and division are different. Also, to measure the program
complexity, the execution time for microprocessor should be taken into consideration. This
execution time for different processor types are compared for 80286, 80486, and Pentium
processors. It is found that the operators time for addition, multiplication and division are
different for each definitely vocabulary, volume, difficulty and effort for each operator.
Then, the cognitive functional size (CFS) used on the basis of cognitive weights, permitting
determination of software complexity from both architectural and cognitive aspects. Real-
time process algebra (RTPA) has been adopted to describe and measure software
complexity. A set of examples had been carried out to analyze the relationship between
physical size and cognitive functional size of software. Moreover, software complexity
model showed the relation between the problem and constrains that might be affect the
quality and productivity of software is introduced. The issues and resources that effect the
testing such as usability, reliability, management and risk which will help us to improve the
quality to develop the software complexity are studied. Also, the compatibility,
maintainability and understandability that effecting the proposed model which will

influence the software productivity are studied.

Structural and algorithmic complexity are two aspects of software that had been measured

and evaluated. The way of measuring productivity and quality are discussed and found that

weighing these dimensions together in a measure of software performance. McCabe's and
Halstead methods were chosen since it is widely used and available among sofiware
developments automatic counting tools. It can be implemented early in the software
development process. The measure of expected quality can then be seen as an inverse
measure of defect density, and McCabe’s method is therefore used as an estimation of the
number of errors in the code. When these measures of productivity and quality are
calculated, an overall picture of expected and real performance were got by drawing the
graph description. The measurement of expected performance can be used to evaluate, if
more resources are needed for testing the system, and estimate how long time the
integration and verification sessions will be taken. If the reliability (quality) of the system is
the principal goal, the project should end up in the right part of the graph. On the other
hand, if timeliness of the product is most important, and the aiming at placing the project as

high up as possible relatively to other projects.

7.2 Future Works

Subjects which need further research and investigation are:

e Build system which will be able to measure automatically the complexity of a
program.

e Get the execution time for the other microprocessors and perform the comparison
with other type of microprocessors.

» Software provider need to give in table format, the execution time and access time
for keywords in all languages such as if. for and while for all type of
microprocessors which will help to measure the complexity of software more
accurately.

e Implement a new software that can provide measurement of software productivity

and quality as suggested in the proposed model.

http://www.tcpdf.org

‘e o* inghiialljl

4 DARALMANDUMAH

Apa M hay L all o cigp 82 alg. T

Measuring software complexity for software engineering quality
assurance

Wohaishi, Ahmad Muhammad Ali

Fahmy, Maged A.. Al Sultanny, Yas A.(Co-Advisor. Advisor)
2009

aolioll

1-155

736039

aueol> blw,

English

uiow>o dlw,

w2l aulzdl asol>

Wl wlwl)al ads

o=l

Dissertations

Ologleall LiglgiSi «oleo | dwrid cogwldl gl
https://search.mandumah.com/Record/736039

Ulgusll

HEWIN| V-1V

ton>l padlio
HEINVIVN P TR |
:&990
1olxaall

:MD 48,

i Sgizeall £9i
raelll

réodell)l
Aol

ra sl

gl

10loglendl aclgd

:&;_..'o|99
ol

‘ ‘ abgaxo dgazl gaox .nghaioll ,ls 2019 ©
aclb of Juoss cliSoy .abgano sl Bsi> gaor Ol lale il Bgi> ool go gdgall BVl sle sl aslio bslall oid
s (esug,SIVI 2yl of iVl gdlgo Jio) alsws STy inidl ol Jugmeil of gas)] gioug onsd sasaia)] plaziwl sslodl 0is

Langhiall ls ol il Bei> Lol o s gy pa

ol LAl Zyl_i.lbl

www.manat

https://search.mandumah.com/Record/736039

116

References

Abdul Ghani A. et. al, 2008, “Complexity Metrics for Measuring the Understandability
and Maintainability of Business Process Models using Goal-Question-Metric™,
International Journal of Computer Science and Network Security, Volume 8 No. 5, May
2008, pp- 219-225.

Abran A. et. al.,2004, “An Analysis of the McCabe Cyclomatic Complexity Number”, 12th
International Workshop on Software Measurement [WSM2004, Kdnigs Wusterhausen,
Germany.

Ali K. et. al, 2004, “A Software Architecture Approach to Remote Vehicle Diagnostics™,
Msc thesis in Informatics, It University of Goteborg, Sweden, pp. 37-41.

Ali M., 2006, ©“ Metrics for Requirements Engineering”, Msc thesis, Department of
Computer Science, UMEA University, Sweden, June 2006.

Areejit P. et. al., 2005, “Complexity metrics for manufacturing control architectures based
on software and information flow”, Computers & Industrial Engineering, Volume 49, pp.
1-20.

Ashrafi 2003, “The impact of software process improvement on quality: in theory and
practice”, Information & Management. Issue 40, pp. 677-690.

Banker R. 1989, “Software Complexity and Maintainability”, International Conference on
Information Systems, Proceedings of the tenth international conference on Information
Systems, pp. 247 - 255 .

Basili V. 1980, “Qualitative Software Complexity Models: A Summary in Tutorial on
Models and Methods for Software Management and Engineering”, Los Alamitos, Calif.:
IEEE Computer Society Press.

Benusst L., 1995, “Analysing the technological history of the Open Source Phenomenon™,
FLOSS history, working paper, version 3.0, Department of Economics — University of
Turin.

Boehm B., 1989, “Software Risk Management”, Institute of Electrical & Electronics
Engineering (IEEE), August 1989.

Boy G., 2005, “Decision Making: A Cognitive Function Approach”, European Institute of
Cognitive Sciences and Engineering, Proceedings of the Seventh International NDM
Conference, June 2005.

Brenda C. et.al. 2002, Sefiware Quality Assurance Subcommittee, “Software Quality
Assurance Control of Existing Systems”, SQA Control of Existing Systems.

Bussieck M. et. al. 2004, ** Software Quality Assurance for Mathematical Modeling
Systems”, GAMA Development Corporation.

Campione M. et. al. 2001, "The Java Tutorial, As Short Course on the Basics", Addison
Wesley.

Cardoso, 2006, © Appreaches to Compute Workflow Complexity”, Dagstuhl Seminar, The
Role of Business Processes in Service Oriented Architectures, July 2006, Germany.

Cardoso, 2006, “Complexity Analysis of BPEL. Web Processes™, Improvement and Practice
Journal, John Wiley & Sons.

Cardoso et. al. 2006, “A Discourse on Complexity of Process Models”. BPM 2006
Workshops, LNCS 4103, pp. 115-126.

Chatzigeorgiou A. et. al, 2003, * Efficient management of inspections in software
development project”, Information & Management 45, 2003, pp. 67!1-680.

Chaumun et. al. 2002, “A change impact mode] for changeability assessment in object-
oriented software system”, Science of Computer Programming, Issue 45, pp. 155-174.

Chis 2008, “Evolutionary Decision Trees and Software Metrics for Module Defects
I1dentification”, World academy of science, engineering and technology Vol. 28. pp. 273-
277, April 2008,

Crutchfield et. al. 1994, “Quality Guidelines = Designer Metrics”, ACM SIGSOFT
Software Engineering Notes, pp. 29-40, February 1994.

Dale N. et. al.,, 2000, "Programming and Problem Solving with C++", Jones and Bartlett.

Daniel G, 2003, “Software Quality Assurance: From Theory to Implementation™, Addison-
Wesley.

Deitel H. et. al., 2004, "C++ How to Program", Pearson Prentice Hall.
Deitel H. et. al., 2005, "Java How to Program”. Pearson Prentice Hall.
Deitel H. et. al., 2006, "Visual Basic 2005 for Programmers", Pearson Prentice Hall.

Deitel H. et. al., 2009, "Internet & World Wide Web How to Program", Pearson Prentice
Hall.

Fagerholm 2007, “Measuring and tracking quality factors in Free and Open Source
Software projects”™, Msc thesis, University of Helsinki, Faculty of Science, Department of
Computer Science.

Fateman R., 2000, “Sofiware Fault Prevention by Language Choice: Why C is Not My
Favorite Language”, Computer Science Division, University of California, Berkeley.

Forouzan B. et. al., 2001, "A Structured programming Approach Using C". Brooks/Cole.

Garcia 2008, “Software metrics through fault data from empirical evaluation using
verification & validation tools”, Msc thesis, Texas Tech University.

Gopal N. et. al, 2004, “Distributed Paralle] Virtual Machine: An Object-Oriented
Approach”, Report, Department of Computer Science, S.C.T College of Engineering.

Gray M., 1999, “ Applicability of Metrology to Information Technology”, Journal of
Research of National Institute of Standards and Technology, Volume 104, Number 6.
November — December 1999, pp. 567- 578.

Gruhn V. et. al, 2006, “Complexity Metrics for Business Process Models™, 9th
international conference on business information systems (BIS 2006), Vol. 85 of Lecture
Notes in Informatics, pp. 1-12.

Henry et. al. 1981, "Software structure metrics based on information flow". 1EEE
Transactions on Software Engineering, Volume 7. No. 5, pp. 510-518.

Hoare C., 1987, “Laws of Programming”, Comm. ACM. Vol. 30, No. 8, August 1987, pp.
672-686.

IEEE Std 1061, 1998, “IEEE Standard for a Software Quality Metrics Methodology™.
Software Engineering Standards Committee of the IEEE Computer Society.

Jones M. et al. 1997, “Twenty years of software engineering standardization in ESA™.
European Space Research and Technology Centre (ESTEC), Noordwijk, The Netherlands.

Jorgensen P., 2002, “Has the Object-Oriented Paradigm Kept Its Promise?”, Department of
Computer Science and Information Systems, Grand Valley State University.

Kan S. H., 2003, "Metrics and Models in Software Quality Engineering", Pearson
Education.

Kaner C., 2004, “The Ongoing Revolution in Software Testing”, Software Test &
Performance Conference, December 2004,

Kearney . et. al,, 1986, “Software Complexity Measurement™, Vol. 28, New York: ACM
Press, pp. 1044-1050.

Klasky H., 2003, A study of Software Metrics”, Msc thesis, Rutgers, The State University
of New Jersey, May 2003.

119

Klemola T., 2000, “ A Cognitive Model for Complexity Metrics”, Center for Object-
Oriented Technology Applications and Research, University of Technology.

Kushwaha, D. et. al., 2005, “A Modified Cognitive Information Complexity Measure of
Software”, Proceeding of the 7™ International Conference on Cognitive Systems(ICCS™035).

Kushwaha, D. et. al, 2006, “Robustness Analysis of Cognitive Information Complexity
Measure using Weyuker Properties”, ACM SIGSOFT Software Engineer Notes, Vol, 31,
No. 1.

Lou M., 1997, “Measuring Software Complexity”, Enterprise System Journal.

McCabe 1976, “A Complexity Measure”, IEEE Transactions on Software Engineering,
Vol. 2, No. 4, pp. 308-320, December 1976.

Magnus A. et. al.,2004, “Object-Oriented Design Quality Metrics™, Msc Thesis.
Information Technology, Computing Science Department.

Markku O., 1999, “International Conference on Product Focused Software Process
Improvement”, pp. 503-507.

Moores B., 1994, “Concepts of quality and quality management in industry and the service
sector”, Technische Universitat, Berlin, ALLEMAGNE, Vol. 28, No2. pp. 211-218.

Naeem N. et. al, 2006, “Metrics for Measuring the Effectiveness of Decompilers and
Obfuscators”, McGill University.

Nasib S., 2005, “Factors Affecting Effective Software Quality Management Revisited”.
ACM SIGSOFT Software Engineering Notes, Vol. 30, No. 2, pp. 1-4.

Obasanjo D., 2007, “A Comparison of Microsoft's C# Programming Language to Sun
Microsystems' Java Programming Language™ Article.

Pan J., 1999, * Software Reliability”, Article, Carnegie Mellon University.

Pressman R., 2005, " Software Engineering: A Practitioner’s Approach". Mc Graw Hill.
Sarif B., 2003, “Modified Ant Colony Algorithm for Combinational Logic Circuits
Design”, Bsc thesis, Computer Engineering, King Fahd University of Petroleum and
Minerals, November 2003.

Schach S. R., 1997, “Software Engineering with JAVA”, McGraw-Hill

Schach S. R., 2002, “Object-Oriented and Classical Software Engineering”, McGraw-Hill

Schildt H., 1998, "The sinle easiest Way to Master C++ Programming", Mc¢ Graw Hill.

120

Schneidewind, 1975, “Analysis of Error Processes in Computer Software”.

Shao J. et. al., 2003, “A new measure of software complexity based on cognitive weights™,
Canada Journal Electrical Computer Engineering, Vol. 28, No. 2, April 2003,

Smith S., 1999, “The Scientist and Engineer's Guide to Digital Signal Processing™,
California Technical Publishing.

Sommerville 1., 2006, “Software Engineering”, Pearson Education Ltd.

Sofia N., 1999, “Software Complexity and Project Performance”. Department of
Informatics School of Economics and Commercial Law at the University of Gothenburg,
pp. 59-61.

Thomas J. et. al., 1994, “Software complexity”, Article. McCabe and Associates, Inc.
River C., 2006, “Introduction to Programming in Visual Basic”, Charles River Media.

Vigder M. R. et. al. , 1994, “Software Cost Estimation and Control”, Article, National
Research Council of Canada.

Wang Y., 2003, “The Real-Time Process Algebra (RTPA)”, Annals of Software
Engineering, Vol. 14, October 2002, pp. 235-274.

Watson et. al. 1996, “Structured Testing: A Testing Methodology Using the Cyclomatic
Complexity Metric”, National Institute of Standards and Technology.

Woodman M. et. al., 1997, “The object shop—using CD-ROM multimedia to introduce
object concepts”, ACM SIGCSE Bulletin, Volume 29 , Issue 1, March 1997. pp. 345 —
349,

Yanming C. et. al., 2007, “Exploration of Complexity in Sofiware Reliability”, Tsinghua
Science & Technology, Volume 12. Supplement 1, July 2007, Pages 266-269.

http://www.tcpdf.org

‘e o* inghiialljl

4 DARALMANDUMAH

Apa M hay L all o cigp 82 alg. T

Measuring software complexity for software engineering quality
assurance

Wohaishi, Ahmad Muhammad Ali

Fahmy, Maged A.. Al Sultanny, Yas A.(Co-Advisor. Advisor)
2009

aolioll

1-155

736039

aueol> blw,

English

uiow>o dlw,

w2l aulzdl asol>

Wl wlwl)al ads

o=l

Dissertations

Ologleall LiglgiSi «oleo | dwrid cogwldl gl
https://search.mandumah.com/Record/736039

Ulgusll

HEWIN| V-1V

ton>l padlio
HEINVIVN P TR |
:&990
1olxaall

:MD 48,

i Sgizeall £9i
raelll

réodell)l
Aol

ra sl

gl

10loglendl aclgd

:&;_..'o|99
ol

‘ ‘ abgaxo dgazl gaox .nghaioll ,ls 2019 ©
aclb of Juoss cliSoy .abgano sl Bsi> gaor Ol lale il Bgi> ool go gdgall BVl sle sl aslio bslall oid
s (esug,SIVI 2yl of iVl gdlgo Jio) alsws STy inidl ol Jugmeil of gas)] gioug onsd sasaia)] plaziwl sslodl 0is

Langhiall ls ol il Bei> Lol o s gy pa

ol LAl Zyl_i.lbl

www.manat

https://search.mandumah.com/Record/736039

Appendix A

The examples are taken from How to program C++ Book by Deitel & Deitel Pearson
Prentice Hall, 2005.

P1:
// Calculate the product of three integers
#include <iostream> // allows program to perform input and output

using std::cout; // program uses cout
using std::cin; // program uses cin
using std::endl; // program uses end!

/f function main begins program execution
int main()
{
int x; // first integer to multiply
int y; // second integer to multiply
int z; // third integer to multiply
int result; // the product of the three integers

cout << "Enter three integers: "; // prompt user for data

cin >> x >> y >> z; // read three integers from user

result = x * y * z; // multiply the three integers; store result

cout << "The product is " << result << endl; // print result; end line

return 0; // indicate program executed successfully
} // end function main

A.1: program number (P 1)

P2:

// Exercise 2.16 Solution
#include <iostream> // allows program to perform input and output

using std::cout; // program uses cout
using std::endl; // program uses endl
using std::cin; // program uses cin

int main()

{
int numberl; // first integer read from user
int number2; // second integer read from user

cout << "Enter two integers: "; // prompt user for data
cin >> number] >> number2; // read values from user

// output the results
cout << "The sum is " << number| + number2

<< "\nThe product is " << number! * number2

<< "\nThe difference is " << number! - number2

<< "\nThe quotient is " << number! / number2 << endl;
return 0; // indicate successful termination

3 // end main

A.l: program number (P 2)

123

P 3:

// Exercise 2.17 Solution
#include <iostream> // allows program to perform input and output

using std::cout; // program uses cout
using std::endl; // program uses endl

int main()

{
// Part a

cout << "1 23 4\n";

// Part b
cout << " " << M2 "M << "3 " << "\n"

/f Part ¢

cout << "I "

cout <<"2 ";

cout << "3 ";

cout << "4" << endl;

return 0; // indicate successful termination

} // end main

A.1: program number (P 3)

124

P4:

/{ Exercise 2.18 Solution
#include <iostream> // allows program to perform input and output

using std::cout; // program uses cout
using std::endl; // program uses endl
using std::cin; // program uses cin
int main()

{

int numberl; // first integer read from user
int number2; // second integer read from user

cout << "Enter two integers: "; // prompt user for data
cin >> numberl >> number2; // read two integers from user

if (number1 == number?2)
cout << "These numbers are equal.” << endl;

if (number] > number2)
cout << number] << " is larger." << endl;

if (number2 > numbert)
cout << number2 <<" is larger." << endl;

return (; // indicate successful termination

} /7 end main

A.l: program number (P 4)

125

PS5:

// Exercise 2.19 Solution
#include <iostream=> // allows program to perform input and output

using std::cout; // program uses cout
using std::endl; // program uses end|
using std::cin; // program uses cin

int main()
{
int numberl; // first integer read from user
int number2; // second integer read from user
int number3; // third integer read from user
int smallest; // smallest integer read from user
int largest; // largest integer read from user
cout << "Input three different integers: "; // prompt
cin >> number| >> number2 >> number3; // read three integers

largest = number1; // assume first integer is largest

if (number2 > largest) // is number?2 larger?
largest = number2; // number?2 is now the largest

if (number3 > largest) // is number3 larger?
largest = number3; // number3 is now the largest

smallest = number!; // assume first integer is smallest

if (number2 < smallest) // is number2 smaller?
smallest = number2; // number2 is now the smallest

if (number3 < smallest) // is number3 smaller?
smallest = number3; // number3 is now the smallest

cout <<t "Sum is " << number] + number2 + number3
<< "nAverage is " << (number] + number2 + number3) / 3
<< "\nProduct is " << number] * number2 * number3
<< "\nSmallest is " << smallest
<< "nLargest is " << largest << end]:

return O; // indicate successful termination

} // end main
A.l: program number (P 5)

P 6:

/l Exercise 2.20 Solution
#include <iostream> // allows program to perform input and output

using std::cout; // program uses cout
using std::endl; // program uses endl
using std::cin; // program uses cin
int main()

{

int radius; // variable to store a circle's radius

cout << "Enter the circle radius: "; // prompt user for radius
cin >> radius; // read radius from user

cout << "Diameter is " << radius * 2.0
<< "\nCircumference is " << 2 * 3,14159 * radius
<< "\nArea is " << 3.14159 * radius * radius << endl;

return 0; // indicate successful termination

} // end main

A.l: program number (P 6)

127

P7:

// Exercise 2.21 Solution
#include <iostream> // allows program to perform input and output

using std::cout; // program uses cout
using std::endl; // program uses endl

int main()
COUE << MR R A ek ET T * Hipn

<< Mk ¥ % * * %k * H\ g
<< Mk * ¥ LR L LT B AN
< Nk * ¥ % * * o\
< Tk * & * % * *\nvr
< Wk * % * * * Ep
<< ME * % * * LA
<< Mk * * * * * *\n"
<o Tk kK ok o *ok ¥ * * << endl;

returnt Q; // indicate successful termination

} // end main

A.1: program number (P 7)

128

PS:

/f Exercise 2.23 Solution
#include <iostream> // allows program to perform input and output

using std::cout; // program uses cout
using std::endl; // program uses endl
using std::cin; // program uses cin

int main()

{
int numberl; // first integer read from user
int number?2; // second integer read from user
int number3; // third integer read from user
int number4; // fourth integer read from user
int number3; / fifth integer read from user
int smallest; // smallest integer read from user
int largest; // largest integer read from user

cout << "Enter five integers: "; // prompt user for data
cin >> number] >> number2 >> number3 >> number4 >> number5;

largest = number1; // assume first integer is largest
smallest = number|; // assume first integer is smallest

if (number1 > largest) // is number! larger?
largest = numberl; // number] is new largest

if (number2 > largest } // is number2 larger?
largest = number2; // number2 is new largest

if (number3 > largest) // is number3 larger?
largest = number3; // number3 is new largest

if (number4 > largest) // is number4 larger?
largest = number4; // number4 is new largest

if (number5 > largest) // is number5 larger?
largest = number5; // number3 is new largest

if (number! < smallest) // is number1 smaller?
smallest = numberl; // number! is new smallest

if (number2 < smallest) // is number2 smaller?
smallest = number2; // number2 is new smallest

129

if (number3 < smallest) // is number3 smaller?
smallest = number3; // number3 is new smallest

if (numberd < smallest) // is number4 smaller?
smallest = number4; // number4 is new smallest

if (number5 < smallest) // is number5 smaller?
smallest = number5; // numbers is new smallest

cout << "Largest is " << largest
<< "\nSmallest is " << smallest << endl;

return 0; // indicate successful termination

+ // end main

A.l: program number (P 8)

130

P9

// Exercise 2.24 Solution
#include <iostream> // allows program to perform input and output

using std::cout; // program uses cout
using std::endl; // program uses end|
using std::cin; // program uses cin

int main()

{

int number; // integer read from user

cout << "Enter an integer: "; / prompt
cin >> number; // read integer from user

if (number % 2==0)
cout << "The integer " << number << " is even." << endl;

*

if (number %2 1=0)
cout << "The integer " << number << " is odd." << end|:

return 0; // indicate successtul termination

} // end main

A.1: program number (P 9)

131

P 10:

// Exercise 2.25 Solution
#include <iostream> // allows program to perform input and output

using std::cout; // program uses cout
using std::endl; // program uses end!
using std::cin; / program uses cin

int main()

{

int numberl; // first integer read from user
int number2; // second integer read from user

cout << "Enter two integers: "; // prompt
cin>> numberl >> number2; // read two integers from user

// using modulus operator
if (number1 % number2 =10)

cout << number]l <<"is a multiple of " << number2 << endI;

if (numberl % number2 !=0)
cout << numberl << " is not a multiple of " << number2 << endl;

return 0; // indicate successful termination

3 // end main

A.1: program number (P 10)

132

P 11:

// Exercise 2.26 Solution
#include <iostream> // allows program to perform input and output

using std::cout; // program uses cout
using std::endl; // program uses end|

int main()

{
// Eight output statements

Cout << ¥ * F ¥ %k K\
cout << " ¥ E R Exx x A\pr.
COUt << "% * % % K % & kype
Cout << 1" % * kK Kk K w\po.
cout < ek ok ok ok K %k 3k *\\n";
cout << MR F Rk k k& g
COUt << ™k * % % * # * #\pr.
COLL << " % % K % %k K K\pipe.

// One output statement; 3 parts
COUt << M % % o %k F\p ¥ K % kK K Kk ¥ kK K K K K\

<<"********\\n********\n********‘\n“
<<"********\n********\n”.

cout << endl; // ensure everything is displaved
return &: // indicate successful termination

} // end main

A.l: program number { P 11)

133

P 12:

// Exercise 2.27 Solution
#include <iostream> // allows program to perform input and output

using std::cout;
using std::endl;
using std::cin;
int main{)

{

char symbol; // char read from user

cout << "Enter a character: "; // prompt user for data
cin >> symbol; // read the character from the keyboard

cout << symbol << "'s integer equivalent is "
<< static_cast< int >{ symbol) << end;

return 0; // indicate successful termination

} // end main

A.l: program number (P 12)

134

P 13:

// Exercise 2.28 Solution
#include <iostream> // allows program to perform input and output

using std::cout; // program uses cout
using std::endl; // program uses endl
using std::cin; // program uses cin

int main()
int number; // integer read from user

cout << "Enter a five-digit integer: "; // prompt
cin >> number; // read integer from user

cout << number / 10000 << " ";
number = number % 10000;
cout << number / 1000 <" ",
number = number % 1000;

cout << number / 100 << " ",
number = number % 100;

cout << number/ 10 <<" ™;
number = number % 10;

cout << number << endl;

return 0; // indicate successful termination

} // end main

A.l: program number (P 13)

135

P 14:

// Exercise 2.29 Solution
#include <iostream> // allows program to perform input and output

using std::cout; // program uses cout
using std::endl; // program uses endl

int main()

{

int number; // integer to square and cube

number = 0; // set number to 0
cout << "integer\tsquare\tcube\n”; // output column heads

// output the integer, its square and its cube
cout << number << '\t' << number * number << '\t'
<< number * number * number << "\n";

number = 1; // set number to 1
cout << number << "t' << number * number << "\t'
<< number * number * number << "\n";

number = 2; // set number to 2
cout << number << \t' << number * number << '\t'
<< number * number * number << "\n";

number = 3; // set number to 3
cout << number << \t' << number * number <<"\t'
<< pumber * number * number << "\n";

number = 4; // set number to 4
cout << number << \t' << number * number <<"\t'
<< number * number * number << "\n":

number = 5; // set number to 5
cout << number << t' << number * number << "\’
<< number * number * number << ™\n";

number = 6; // set number to 6
cout << number << \t' << number * number << "\t'
<< number * number * number << ™n":

number = 7; // set number to 7
cout << number << "t' << number * number <<'\t'

136

<< number * number * number << "\n";

number = 8; // set number to 8

cout << number << "t' << number * number <<'\t'
<< number * number * number << "\n";

number = 9; // set number to 9

cout << number << \t' << number ¥ number << '\t'
<< number * number * number << "\n";

number = 10; // set number to 10

cout << number << '\t' << number * number <<"\t'
<< number * number * number << endl;

return 0; // indicate successful termination

} // end main

A.l: program number (P 14)

137

P 15:

// Exercise 3.11 Solution: ex03_11.cpp

// Test program for modified GradeBook class.
#include <iostream>

using std::cout;

using std:iendl;

/! include definition of class GradeBook from GradeBook.h
#include "GradeBook.h"

// function main begins program execution
int main()
{
// create a GradeBook object; pass a course name and instructor name
GradeBook gradeBook(
"CS101 Introduction to C++ Programming", "Professor Smith");

// display initial value of instructorName of GradeBook object
cout << "gradeBook instructor name is: "
<< gradeBook.getInstructorName() << "\nin";

// modify the instructorName using set function
gradeBook.setInstructorName("Assistant Professor Bates”):

// display new value of instructorName
cout << "new gradeBook instructor name is: "
<< gradeBook.getInstructorName() << "\nin";

// display welcome message and instructor's name
gradeBook.displayMessage();
return (; // indicate successful termination

} // end main

A.l: program number (P 15)

138

P 16:

// Exercise 3.12 Solution: ex03_12.cpp

// Create and manipulate Account objects.
#include <iostream>

using std::cout;

using std::cin;

using std::endl;

// include definition of class Account from Account.h
#include "Account.h"

// function main begins program execution
int main()
{
Account account1{ 50); // create Account object
Account account2(25); // create Account object
// display initial balance of each object
cout << "account! balance: $" << account1.getBalance() << endl;
cout << "account2 balance: $" << account2.getBalance() << endl;

int withdrawalAmount; // stores withdrawal amount read from user

cout << "\nEnter withdrawal amount for accountl: "; // prompt
cin >> withdrawal Amount; // obtain user input
cout << "\nattempting to subtract " << withdrawalAmount
<< " from account] balance\n\n";
accountl.debit(withdrawalAmount); // try to subtract from account i
// display balances
cout << "accountl balance: $" << account].getBalance() << endi;
cout << "account? balance: $" << account2.getBalance() << endl;

cout << "\nEnter withdrawal amount for account2: "; // prompt
cin >> withdrawalAmount; // obtain user input
cout << "\nattempting to subtract " << withdrawalAmount
<< " from account2 balance\n\n";
account2.debit(withdrawalAmount); // try to subtract from account2

// display balances
cout << "account! balance: $" << account].getBalance() << endl;
cout << "account2 balance: $" << account2.getBalance() << endl;
return 0: // indicate successful termination
} // end main
A.l: program number (P 16)

139

P17:

// Exercise 3.13 Solution: ex03_13.cpp

// Create and manipulate an Invoice object.
#include <ipstream>

using std::cout;

using std::cin;

using std::endl;

// include definition of ¢lass Invoice from Invoice.h
#include "Invoice.h"

// function main begins program execution
int main()
{
// create an Invoice object
Invoice invoice("12345", "Hammer", 100, 5):

// display the invoice data members and calculate the amount

cout << "Part number: " << invoice.getPartNumber() << end];

cout << "Part description: " << invoice.getPartDescription() << end!;
cout << "Quantity: " << invoice.getQuantity() << endl;

cout << "Price per item: $" << invoice.getPricePerltem() << endl;
cout << "Invoice amount: $" << invoice.getInvoiceAmount() << endl;

/f modify the invoice data members

imvoice.setPartNumber("123456™);

invoice.setPartDescription{ "Saw");

invoice.setQuantity(-5); // negative quantity, so quantity set to 0
invoice.setPricePerltem(10);

cout << "\nlnvoice data members modified.\n\n";

/1 display the modified invoice data members and calculate new amount
cout << "Part number: " << invoice.getPartNumber() << endl;
cout << "Part description: " << invoice.getPartDescription() << end];
cout << "Quantity: " << invoice.getQuantity() << endl;
cout << "Price per item: $§" << invoice.getPricePerltem() << endl:
cout << "Invoice amount: $" << invoice.getInvoiceAmount() << endl;
return {); // indicate successful termination

} // end main

A.l: program number (P 17)

140

P 18:

// Exercise 3.14 Solution: ex03_14.cpp
// Create and manipulate two Employee objects.
#include <iostream>
using std::cout;
using std::endl;
#include "Employee.h" // include definition of class Employee
// function main begins program execution
int main()
{
// create two Employee objects
Employee employeel("Lisa", "Roberts", 4500);
Employee employee2("Mark”, "Stein", 4000);

// display each Employee's yearly salary
cout << "Employees' yearly salartes: " << endl:

// retrieve and display employeel's monthly salary multiplied by 12

int monthlySalaryl = employeel.getMonthlySalary();

cout <<employeel.getFirstName() <<" " << employeel.getLastName()
<< ": §" << monthtySalaryl * 12 << endl,

// retrieve and display employee2's monthly salary multiplied by 12

int monthlySalary2 = employee2.getMonthlySalary();

cout << employee2.getFirstName() <<" " << employee2.getl_astName()
<< ": §" << monthlySalary2 * 12 << endl;

// give each Employee a 10% raise

employeel.setMonthlySalary(monthlySalaryl * 1.1):

employee2.setMonthlySalary{ monthlySalary2 * 1.1);

// display each Employee's yearly salary again
cout << "\nEmployees' yearly salaries after 10% raise: " << end];

// retrieve and display employeel's monthly salary multiplied by 12

monthlySalaryl = employeel.getMonthlySalary();

cout << employee|.getFirstName() << " " << employeel.getLastName()
<< ": §" <<monthlySalaryl * 12 <<endl:

monthlySalary2 = employee2.getMonthlySalary();
cout << employee2.getFirstName() << " " << employee2.getLastName()
<< ™ §" << monthlySalary2 * 12 <<endl;
return 0; // indicate successful termination
} // end main
A.1: program number (P 18)

141

P 19:

// Exercise 3.15 Solution: ex03_15.cpp
/f Demonstrates class Date's capabilities.
#include <iostream>

using std::cout;

using std::endl;

#include "Date.h" // include definition of class Date from Date.h

// function main begins program execution
int main()

{
Date date(5, 6, 1981); // create a Date object for May 6, 1981

// display the values of the three Date data members
cout << "Month: " << date.getMonth() << end];
cout << "Day: " << date.getDay() << endl;

cout << "Year: " << date.getYear() << endl;

cout << "\nOriginal date:" << endl;
date.displayDate(): // output the Date as 5/6/1981

// modify the Date

date.setMonth(13); // invalid month
date.setDay(1);

date.setYear(2005);

cout << "\nNew date:" << end!;
date.displayDate(); // output the modified date (1/1/2005)
return 0; // indicate successful termination

} // end main

A.l: program number (P 19)

142

P 20:

/f Exercise 4.5 Solution: ex04_05.cpp

// Calculate the sum of the integers from | to 10.
#include <iostream>

using std::cout;

using std::endl;

int main()

{
int sum; // stores sum of integers 1 to 10
int x; // counter

x=1;// count from |
sum = 0; // initialize sum

while (x <= 10) // loop 10 times
{

sum += x; // add x to sum

x++; // increment x
} // 'end while

cout << "The sum is: " << sum << endl;
return &; // indicate successful termination
} // end main

A.1: program number (P 20)

143

P 21:

// Exercise 4.6 Solution: ex04 06.cpp

/f Calculate the value of product and quotient.
#include <iostream>

using std::cout;

using std::endl;

int main{)

{
int x=5;
int product = 5;
int quotient = 5;

// part a

product *= x++; // part a statement

cout << "Value of product after calculation: " << product << endl;
cout << "Value of x after calculation: " << x << endl << endl;

// partb
x =5 // reset value of x
quotient /= ++x; // part b statement
cout << "Value of quotient after calculation: " << quotient << endl,
cout << "Value of x after calculation: " << x << endl << endl;
return 0; // indicate successful termination

} // end main

A.l: program number (P 21)

144

P 22:

/{ Exercise 4.8 Solution: ex04 08.cpp
// Raise x to the y power.

#include <iostream>

using std::cout;

using std::cin;

using std::endl;

int main()
{
int x; // base
int y; // exponent
int i; // counts from 1 to y
int power; // used to calculate x raised to power y

i=1;// initialize i to begin counting from 1
power = 1; // initialize power

cout << "Enter base as an integer: "; // prompt for base
cin >> x; // input base

cout << "Enter exponent as an integer: ": // prompt for exponent
¢in >>y; // input exponent

// count from | to y and multiply power by x each time
while (i<=y)
{
power *= x;
i+
} /1 end while

cout << power << endl; // display result
return 0: // indicate successful termination
} // end main

A.1: program number (P 22)

145

P 23:

// Exercise 4.12 Solution: ex04 12.cpp
// What does this program print?
#include <iostream>

using std::cout;

using std::endl;

int main()
{
int y; // declare y
int x =1, // initialize x
int total = §; // initialize total

while { x <= 10) // loop 10 times

{
y = x * x; // perform calculation
cout <<y << endl; // output result
total +=y; // add y to total
xt+; // increment counter x

} // end while

cout << "Total is " << total << endl; // display result
return 0; // indicate successful termination
} // end main

A.l: program number { P23}

146

P 24:

// Exercise 4.18 Solution: ex04 18.cpp

// Print table of values with counter-controlled repetition.
#include <iostream>

using std::cout;

using std::endl;

int main{)

{

intn=0;

// display table headers with tabbing
cout << "N 10*NAt100*Nt1000*¥N\n\n";

while (++n <= 5) // loop 5 times

// calculate and display table values
cout <<n <<At'<< 0 * p<<\t'<< 100 * n
<<A'<< 1000 * n <<"\n";
} // end while

cout << endl;

return 0; // indicate program ended successfully
} // end main

A.l: program number { P 24)

147

P 25:

// Exercise 4.21: ex04 21.cpp

// ' What does this program print?
#include <iostream>

using std::cout;

using std::endl;

int main()

{

int count = 1; // initialize count

while (count <= 10) // loop 10 times

{
// output line of text
cout << { count % 2 ? MERR*N bbbt) << endl;
count+t; // increment count

} // end while

return (; // indicate successful termination
} // end main

A.1: program number { P 25)

148

P 26:

// Exercise 4.22: ex04_22.cpp

// What does this program print?
#include <iostream>

using std::cout;

using std::endl;

int main()

{

int row = 10; // initialize row
int column; // declare column

while (row >= 1} // loop until row < |

{

column = [; // set column to 1 as iteration begins

while (column <= 10) // loop 10 times

{
cout << {row %2 ?"<" . ">"); // output
column++; // increment column

+ // end inner while

row--; // decrement row
cout << endl; // begin new output line

} // end outer while

return 0; // indicate successful termination
+ // end main

A.1: program number (P 26)

P27

// Exercise 4.23 Solution: ex04 23.cpp
// Dangling-else problem.

#include <iostream>

using std::cout;

using std::endl;

int main()

{
// part A, x=9 and y=11
intx=9;
inty=11;
cout << "Qutput for part A, x=9 and y=11:" << endl;

if(x<10)
if(y>10)
cout << "F¥EXET o and]:
else
cout << "HHHH" << endl;

cout << "$$$$3$" << endl;

// part A, x=11 and y=9

x=11;

y=9

cout << endl << "Qutput for part A, x=11 and y=9:" << endl;

if(x<10)
if(y>10)
CoUt << "FFFEE < ppd];
else
cout << "#H#H" <<endl;

cout << "$$$3%" << endl;

// part B, x=9 and y=11

x=9;

y=11;

cout << endl << "Qutput for part B, x=9 and y=11:" << end];

if(x<10)
{
if(y>10)
COUt << "FFFFRN 2 and]

k]

} /1 end outer if
else

cout << "#H##H#" <<endl;
cout << "$$8$$" << endl;
} //end else

// part B, x=11 and y=9

x=11;

y=9

cout << endl << "Qutput for part B, x=11 and y=9:" << endl;

if(x<10)
{
if(y>10)
cout << "FEFEXN < apd]:
3 // end outer if
else

cout << "HH##HH" << endl;
cout << "$$$$$" << endl;
} //end else

return 0; // indicate successful termination
} // end main

A.l: program number (P 27)

P 28:

/! Exercise 4.24 Solution: ex04 24.cpp
// Dangling-else problem.

#include <iostream>

using std::cout;

using std::cin;

using std::end];

int main()

{
int x =75; // initialize x to 5
int y = 8; // initialize y to 8

// part a

if(y==8)

{
if(x==5)

cout << "@@@@@" << endl;

else
cout << "H#f#H#" << endl;
} /end if

cout << "$$$$$" << endl;
cout << "&&&&&" << endl << endl;

2

{// part b
if(y==8)
{
if(x==35)

cout << "@@@@@" <<endl;

else
{
cout << "fHH#H" << endl;
cout << "$$$3$$" <<endl;
cout << "&&&&&" << endl;
} // end inner else
} // end outer if

cout << endl;

// part ¢
if(y==8)

{
if(x==35)

151

152

cout << "@@e@@" <<endl;

eise
{
cout << "#i##H" << endl;
cout << "$$$$$" << endl:
} // end inner else
} // end outer if

cout << "&&&&&" << end| << endl;

/{ partd
y=7

if(y==8)
{
if(x=—35)
cout << "@@@@@" <<endl,
} //end if
else
{
cout << "HH#HH" << endl;
cout << "$$$38" << endl;
cout << "&&&&&" << endl;
} // end else

return 0; // indicate successful termination
} // end main

A.1: program number (P 28)

153

P 29:

// Exercise 4.28 Solution: ex04 28.cpp

// Prints out an 8 x 8 checkerboard pattern.
#include <iostream>

using std::cout;

using std::endl;

int main()

{

int row = 8; // row counter
int side; // side counter

while { row-->0) // loop 8 times
{

side = 8: // reset side counter

// if even row, begin with a space
if{row%2=—=0)
cout <<'';

while (side-- > 0) // loop 8 times
cout << "* "

cout << endl; // go to next line
} // end while

cout << end|;

return 0; // indicate successtul termination
} // end main

A.l: program number (P 29)

http://www.tcpdf.org

o o iingliiall jla
. DAR ALMANDUMAH

Apa M hay L all o cigp 82 alg. T

Measuring software complexity for software engineering quality
assurance

Wohaishi, Ahmad Muhammad Ali

Fahmy, Maged A.. Al Sultanny, Yas A.(Co-Advisor. Advisor)
2009

aolioll

1-155

736039

ausol> Jilw,

English

uiow>o dlw,

w2l aulzdl asol>

Lol wlwl)al ads

o=l

Dissertations

Ologleall LigleiSi «oleo | dwrid cogwldl gl
https://search.mandumah.com/Record/736039

Ulgusll

HEWIN| V-1V

ton>T paelio
1S3l 2ol
:&990

olxaall

:MD 48,

1 Sgixol| g9

réodell)l
Aol

ra sl

gl

10loglendl aclgd

ol

abge=o Jga=ll guo> .anglaioll Hl> 2019 ©
acld 9| Joozw cliSoy .abga=o il 98> gio> u| lode),u,uJ| Igs> ulz.o| &0 8990l Bl (sle sy a>lio ds5ladl 01
8 (csiaiSIVI 2yl of iVl g8lgo Jio) dlerg o1 puc sl of Jugzill ol ol ginws daid (sasaidl olasiwl bslall oid

Q.ogh.m“)|> 5|).....\.J| Ygb> ulz.o| U0 ;sx]a> feX3¥-Y]

www.manar

https://search.mandumah.com/Record/736039

ARABIAN GULF UNIVERSITY

College of Graduate Studies F , : Technology Management
Programme

Measuring Software Complexity for
Software Engineering Quality Assurance

A Thesis Submitted in Partial Fulfillment of the Requirements for the Master’s
Degree in Technology Management
(Specializing in Engineering)

Submitted by

Ahmed Mohammed Ali Wohaishi
Bachelor of Electrical Engineering, King Fahad University of Petroleum and
Minerals, Kingdom of Saudi Arabia, 1999

Supervised by

Dr. Yas A. Al-Sultanny Dr. Maged M. Fahmy
Associate Professor of Technology Management Assistant Professor of Computers
Arabian Gulf University King Faisal University
Kingdom of Saudi Arabia

KINGDOM OF BAHRAIN
January 2009 (A.D.) Muharram 1430 (A.H.)

il 5 9 el
il 3y el Wall Ll 2l 3

o 358 (Jeacal G gl i 5 s
Gliaa) daia

Al 5)y
(il (s

KK W

(s § (A5 lada daal

o 1998 (i gl) ASLe ¢ laally Jp ill 2gh ALY Tals Al 58 Austia g SIS,

(4D daae 2ala 2 Al e by 0
aelall caalall i S Lial Al 5 o) Mol
Jeash AL edta ol) dadls

A0 gaall Agy pall ASLadl)

http://www.tcpdf.org

